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Market Neutral Liquidity Provision
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Abstract. Automated Market Makers with concentrated liquidity have to date achieved market
dominance among competing spot trading AMM models in Decentralized Finance. We shift
the prevalent research focus on liquidity providers’ loss metrics, such as Impermanent Loss
or Loss-Versus-Rebalancing, to a market neutral strategy. We derive a hedge portfolio which
allows for concentrated liquidity provision while maintaining market neutrality. We present an
example of the hedge portfolio and highlight the practical restrictions. The hedge portfolio
consisting of options and futures requires a significant capital outlay compared to the amount
of liquidity provided, but typically earns carry from futures contango.

1. Introduction

The initially low throughput of blockchains necessitated a unique spot trading model that differs
from the traditional order-book approach. This led to the development of Automated Market
Makers (AMMs), which are smart contracts that programmatically determine the exchange rate
between two cryptocurrencies (or tokens). In order-book-based trading venues, market makers
post limit orders, whereas in AMMs, liquidity providers lock tokens into a smart contract, called
the liquidity pool, to earn trading fees. Traders can swap one token for the other, the exchange
rate being determined by the trading function. Such trades result in changes in the composition
of the liquidity pool.

The assessment of the liquidity provider’s portfolio value has attracted considerable interest
both among practitioners and academics. In the context of the cryptocurrency bull run and the
surge in retail activity observed in 2021, the main attention has been on “impermanent loss”,
which is the (relative) difference in the liquidity provider portfolio value compared to a buy-and-
hold strategy. That is, as the price of the first token changes in relation to the second token (for
example as the value of BTC increases in relation to a stable USD-token), the liquidity provider
portfolio value experiences a smaller increase in value compared to a buy-and-hold strategy,
disregarding fees earned in the liquidity pool. In the subsequent bear market, and with, arguably,
the gradual influx of professional liquidity providers, we argue that hedging the dollar-value of
the liquidity provider portfolio has gained more attention.

Among the myriads of AMM types, concentrated liquidity AMMs are the most prominent
type of AMMs at the time of writing, measured by trading volume and liquidity provision,
as evidenced in Table 3 in Appendix B. Given this dominance and the focus of the literature
on impermanent loss (typically a concern for unbounded liquidity provision), we see a gap
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in the literature for a rigorous derivation of the hedging portfolio for the liquidity provider in
concentrated pools, coupled with practical applicability. Liquidity providers who hedge their
impermanent loss follow (by definition of impermanent loss) a buy-and-hold strategy. We shift
the focus towards a market-neutral strategy where the goal is to keep the numéraire value of the
portfolio constant while earning interest from trading fees, instead of profits from speculative
investing. We contribute to the literature by deriving a numéraire hedge for the most prominent
AMM type, concentrated liquidity for constant function markets (e.g. Uniswap v3), in a more
rigorous framework than previously published (cf. Clark (2021)1). Moreover, we provide an
empirical example of such a hedge using data from Deribit, a crypto options exchange, and report
practical limitations.

The resulting hedging strategy consists of a portfolio of long straddles, enclosed by a long
and short synthetic position in the underlying that we construct with options (the long synthetic
corresponds to a long call and a short put at the same strike). While in theory the hedge is
constructed with a portfolio of a continuum of option strikes, we find that, based on our example
hedge, only a few options are required for the hedge to be effective. If the margin of the hedge is
held in the underlying such as BTC or ETH as on Deribit, the margin itself is to be hedged as
well.

The difficulties in implementing the hedge result from the limited availability of options
for cryptocurrencies affecting the choice of tokens, the minimal contract sizes, the range of
liquidity provision, and the maturity of the hedged liquidity provision. The minimal option
contract sizes render hedging for smaller liquidity provisions prohibitively costly. The hedger
also faces a limited availability to write (i.e., sell) options. On Deribit, options are margined in
the token itself (as opposed to a USD-stable token), and hence a hedge for the margin collateral
is required. Either a perpetual future or a dated future is well-suited. Historically, short positions
in perpetual futures on average earn funding rates,2 and short positions in dated cryptocurrency
futures typically earn a carry,3 both of which are beneficial to our hedging strategy.

At maturity, the gain of the option portfolio corresponds to the loss of the LP position (or
vice versa). The margin requirement for the options sold is non-negligible and locks up capital of
about double the liquidity provision amount in our example. The collateral of the inverse options
needs to be hedged too. However, the entire hedge portfolio, consisting of a portfolio of long
and short options and a short future, earns carry from the future. The premia of the options sold
exceeds the premia from the options bought and thus reduces the expense at trade initiation. A
significant portion of the portfolio return stems from the futures carry (or, correspondingly, the
perpetuals’ funding rates).

1.1. Spot Trading AMMs—A general class of AMMs are Constant Function Market Makers
(CFMM), in which liquidity takers swap x units of the first currency for y units of the second
currency in accordance with the equation

ϕ(x̃, ỹ,x,y) = ϕ(x̃, ỹ,0,0) (1)

(see e.g., Mohan (2022)).4 The function ϕ is called the trading function and is increasing in each
of its arguments. The arguments x̃ > 0 and ỹ > 0 represent the reserve amounts of the first and
second currency in the pool at the time. When the trade amount x > 0, this means a liquidity
taker adds x units of the first currency to the pool to receive −y > 0 units of the second currency
from the LP (or vice-versa with y > 0). AMMs were introduced by Bancor in 2017 and gained
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prominence with the implementation of Uniswap (v1 and v2). The trading function Bancor and
Unsiwap employed is termed the Constant Product Market Maker, which prescribes that the
post-trade product of the two reserve tokens equals the pre-trade value. Thus

ϕ(x̃, ỹ,x,y) =
√

(x̃+ x)(ỹ+ y) (2)

together with Equation (1) holds. While Uniswap-type Constant Product Market Maker pools
consist of two assets, Balancer extended the idea and created Geometric Mean Market Makers
that comprise pools of several assets.5 Curve, a prominent example for Hybrid Function Market
Makers, aims to provide sufficient liquidity with little slippage for stable assets.6 Despite its
prevalence for stable pairs, Curve is less relevant for our study because the focus on stable pairs
implies a stable value for the liquidity provider portfolio. Uniswap introduced concentrated
liquidity with its version 3, the type of AMM we focus on in this study.

1.2. Literature—Constant Product Market Makers (CPMMs) have attracted considerable
attention from practitioners and academics alike, see Mohan (2022).4 The research focus has
so far been mainly on Impermanent Loss, which can be characterized as a manifestation of
adverse selection risk that liquidity providers are exposed to (cf., e.g., Milionis et al. (2023)7).
In fact, Fukasawa et al. “Weighted Variance Swaps” (2023) showed that Impermanent Loss is
equivalent to selling a particular portfolio of European put and call options, and can thus be
hedged statically by purchasing this option basket, assuming fees are not part of the pool.8 The
analysis therein was generalized in Fukasawa et al. “Model-Free Hedging” (2023) by including
fees, where the authors showed that Impermanent Loss can be super-hedged dynamically and
that the shortfall versus a self-financing portfolio with the same constant weights vanishes (Loss-
Versus-Rebalancing) if there is perfect competition among arbitrageurs;9 cf. also Milionis et al.
(2023).10 While most of the impermanent loss literature focuses on Uniswap v2-type AMMs,
Lipton et al. (2024) propose a unified approach to hedging impermanent loss for both Uniswap
v2 and its next iteration, Uniswap v3, implementing concentrated liquidity provision.11 Clark
(2020) derives a replicating portfolio for the liquidity provision portfolio of a Constant Product
AMM, assuming vanishing fees.12

Our approach is related technically with the work of Clark (2021) and Deng et al.1, 13 The
latter derived the replicating portfolio for impermanent loss in concentrated CPMMs, the former
derived a replicating portfolio for concentrated liquidity involving bonds and options.

2. Uniswap v3-Type Concentrated Liquidity Provision

Uniswap v3 is a constant function market maker in which liquidity providers deposit tokens for a
given price range PU to PL.14 The boundaries can be chosen at a discrete granularity, termed ticks.
Within the ticks, the trading function is borrowed from Uniswap v2, that is, when swapping ∆x
tokens of token X (after fees), the amount ∆y of token Y received (vice versa when adding ∆y
after fees) is given by (

x(v)+∆x
)(

y(v)+∆y
)
= Li (3)

where Li is a variable termed liquidity that is tracked for every price range i (between the ticks)
and constant within a range as long as no additional liquidity providers enter or exit the pool.
However, x(v) and y(v) that in v2 correspond to the global amounts of tokens X and Y are ‘virtual’
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in v3 and derived from price and Li: Li =
√

x(v)y(v),
√

P =
√

y(v)/x(v).15 The trading function is
applied up to the tick boundary and continued with the different liquidity L j belonging to the
next range.

2.1. Liquidity Provision—With PU and PL the upper and lower tick prices for which the
liquidity provider wants to offer liquidity, initial deposits, (y,x), at price P are determined as
specified in (6.29) and (6.30) of the Uniswap v3 Whitepaper:16

y =


0 P < PL

`
(√

P−
√

PL
)

PL < P < PU

`
(√

PU −
√

PL
)

P > PU

(4)

x =


`
(

1√
PL
− 1√

PU

)
P < PL

`
(

1√
P
− 1√

PU

)
PL < P < PU

0 P > PU .

(5)

For a given “liquidity” `, lower bound price PL, and upper bound price PU , the amount of
token X, x, and the amount of token Y, y, are given by the above equation. In practice, the
liquidity provider would, for example, specify the amount of token Y , PL, and PU and the amounts
` and x would then be given by the two equations. The pool liquidity between PU and PL increases
by `, that is Li← Li+` for all ranges i within PU and PL. The Liquidity Provision positions stores
the value `. The value ` remains constant, regardless of price changes, fees earned, and liquidity
added by other participants. Fees in Uniswap v3 are kept outside the pool so that, together with
` being invariant, the liquidity provision portfolio can be accurately valued without additional
assumptions given a price P, independent of the trading activity—unlike in v2.17

2.2. Liquidity Position Valuation—For a given position, the token composition of a given
liquidity position varies with the price P as specified in Equations (4) and (5), in which all
variables except P remain constant as the price P moves. For prices P above the upper limit PU ,
the liquidity provider only holds token Y (the numéraire token). For prices P < PL, the liquidity
provider is left with only token X .

We can now express the value of the liquidity position as a function of the price

V (P) = y+ xP (6)

=


`P( 1√

PL
− 1√

PU
) P < PL

`(
√

P−
√

PL)+ `( 1√
P
− 1√

PU
)P PL < P < PU

`(
√

PU −
√

PL) P > PU

(7)

where the token value is expressed with numéraire Y . The liquidity provider position can be
dynamically delta-hedged with respect to the numéraire Y by entering a position of −∂V (P)/∂P,
the position negative delta. Clearly, the delta hedge, −∂V (P)/∂P, corresponds to shorting the
amount of token x that the liquidity provider owns for a given price P, and therefore the delta
coincides with Equation (5). In Appendix 3, we derive Delta and Gamma, and plot an example
of the liquidity provision value as a function of price, delta, and token composition (Figure 4).
The payoff V (P) superficially resembles that of a covered call option, an observation taken up by
DeFi projects.18
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3. Risk Neutral Valuation

We consider a liquidity provider entering at price P0 with token amounts x0 and y0 wishing to
hedge the value of their initial position in the numéraire token Y . The goal then is to replicate the
value V (P) with options so that at option maturity, the payoff of the option portfolio corresponds
to that of the liquidity provision. To do so, we condense Equation (7) into a single equation using
the notation (x)+ = max(0,x):

V (P)/`= P
(

1√
P
− 1√

PU

)+

−P
(

1√
P
− 1√

PL

)+

+
(√

P−
√

PL

)+
−
(√

P−
√

PU

)+
. (8)

Following Fukusawa et al. (2023) “Weighted Variance Swaps”, we assume that interest rates are
zero.8 By the Carr-Madan Formula,19 any function f (x) with left derivative f ′ and f ′′ existing as
a generalized function can be represented as

f (x) = f (x∗)+ f ′(x∗)(x− x∗)

+
∫ x∗

0
f ′′(k) (k− x)+ dk+

∫
∞

x∗
f ′′(k) (x− k)+ dk (9)

(cf. Carr & Lee (2009) Remark 3.1 or Carr et al. (2021) p.3).20–22 The valuation makes no
assumptions on the dynamics of the price process, other than P being a positive process, so that
the hedge is “model-free”.

Lemma 3.1.

x
(

1√
x
− 1
√

η

)+

=
1

2
√

η
(η− x)+− 1

4

∫
η

0
k−

3
2 (k− x)+ dk (10)

(√
x−
√

η
)+

=
1

2
√

η
(x−η)+− 1

4

∫
∞

η

k−
3
2 (x− k)+ dk (11)

[Proof ] We use Equation (9), and set x∗=η and f (x)=
√

x−x/
√

η . We have f ′(x)= 1/(2
√

x)−
1/
√

η and f ′′(x) =−1/4x−3/2. Hence,(√
x− x
√

η

)
=− 1

2
√

η
(x−η)

− 1
4

∫
η

0
k−3/2 (k− x)+ dk− 1

4

∫
∞

η

k−3/2 (x− k)+ dk (12)

which we re-order and multiply by the indicator 1{x<η} to get(√
x− x
√

η

)+

=
1

2
√

η
(η− x)+− 1

4

∫
η

0
k−3/2 (k− x)+ dk. (13)

The derivation of (11) follows analogously and can be found in Deng et al. (2023).13

Proposition 3.2. The value of the liquidity provision claim at terminal time T per unit of ` equals

E[V (PT )]/`=−
1
4

∫ PU

PL

k−
3
2 (p(k)+ c(k)) dk

+
1

2
√

PU
(p(PU)− c(PU))+

1
2
√

PL
(c(PL)− p(PL)) (14)
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where PT is the price at terminal time T , c(k) and p(k) are European call and put options
with maturity T and strike k. Alternatively, the second line could be represented with forward
contracts 1/(2

√
PU)(P−PU)+1/(2

√
PL)(P−PL).

[Proof ] We apply Lemma 3.1 to Equation (8).

V (P)/`=
1

2
√

PU
(PU −P)+− 1

4

∫ PU

0
k−

3
2 (k−P)+ dk

− 1
2
√

PL
(PL−P)++

1
4
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0
k−

3
2 (k−P)+ dk

+
1

2
√

PL
(P−PL)

+− 1
4

∫
∞

PL

k−
3
2 (P− k)+ dk

− 1
2
√

PU
(P−PU)

++
1
4

∫
∞

PU

k−
3
2 (P− k)+ dk

=−1
4

∫ PU

PL

k−
3
2 (k−P)+ dk− 1

4

∫ PU

PL

k−
3
2 (P− k)+ dk

+
1

2
√

PU
((PU −P)+− (P−PU)

+)

+
1

2
√

PL
((P−PL)

+− (PL−P)+). (15)

Taking expectations under the risk-neutral measure and applying put-call parity we have

E[V (PT )/`] =−
1
4

∫ PU

PL

k−
3
2 p(k) dk− 1

4

∫ PU

PL

k−
3
2 c(k) dk

+
1

2
√

PU
(P−PU)+

1
2
√

PL
(P−PL). (16)

4. Hedging in Practice

Proposition 3.2 perfectly replicates the liquidity provider positions. Hence, shorting the replicat-
ing portfolio that consists of options H :=−E[V (PT )] (see Eq. (16)) hedges the liquidity provider
position. Options on Deribit are margined in base currency (BTC for options on BTC-USD), and
termed inverse options. The initial margin requirement is significant in relation to the liquidity
provision size and therefore needs to be dollar-hedged as well, using a perpetual or dated future.
The hedge portfolio hence consists of inverse options and a future.

In practice, options cannot be purchased at a continuum of strikes, and we approximate the
hedge portfolio H with a Riemann integral and denote this approximation as Ĥ. The hedging
strategy requires the available strikes, Ki for i = 1, ...,N, to enclose the boundaries PL and PU .23

We can approximate H/` as

Ĥ/`=
1

2
√

PU
(c(PU)− p(PU))+

1
2
√

PL
(p(PL)− c(PL)) (17)

+
1
4

N

∑
i

1{Ki≥PL,Ki≤PU}K
− 3

2
i (p(Ki)+ c(Ki))(ri− li)

where li = max(Pl,(Ki−1 +Ki)/2), and ri = min(Pu,(Ki +Ki+1)/2). This hedge involves selling
a put option with strike PU and selling a call option with strike PL—similar to a short “gut
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spread”—which earns the premium from the short call and from the short put. Writing options
requires the seller to post margin.24 To dollar-hedge the BTC-margin, we can either resort to
dated futures or perpetual futures margined in USD-tokens. Typically dated futures are subject
to contango, and hence earn a carry.3 Perpetual futures typically trade close to spot and feature
a funding rate. Funding rates are paid from the long to the short when spot trades below the
perpetual price, and have historically been positive on average, see e.g., Zou (2022),2 meaning
that the short position earns funding rates.

We wish to hedge the liquidity provision position detailed in Table 1, which has an initial
value of $48,612 at a BTC price of $63,950. To do so, we use options with maturity 30 August
2024, entering the position on 19 July 2024.

Table 1. Liquidity Provision Position to Hedge. In practice, our choice of liquidity provision
range (PL, PU ) is informed by the availability of options. The best liquidity is available for
near at-the-money and out of the money puts and calls. In-the-money puts and calls typically
have higher spreads and lower liquidity. We therefore use taker prices (ask price when buying,
bid price when selling) when calculating the hedging costs, as detailed in Appendix 4. We
set Y and, given the current BTCUSD price, the values for `, X, and V (P0) are given by the
definitions of a concentrated liquidity AMM.

PL $59,000
PU $69,000
Y $25,000

` 2,503.95
X 0.369226
V (P0) $48,611.98

Table 2 presents the complete portfolio consisting of liquidity provision position and hedge
for a maturity of 42 days. Appendix 4 provides more details on the construction of the hedge.

Table 2. Summary of LP Position and Hedge. This table shows that the expense for a dollar
hedged liquidity provision position (in BTC and converted to USD), including a hedge of
the initial margin provided in BTC with a 3x initial leverage. The market neutral portfolio
amounts to a total capital expense of $211,556, of which the liquidity provision is $48,612.

BTC USD

Margin net of premia 1.557 $99,562
Premia long options 0.472 $30,195
LP 0.760 $48,612
Short Perpetual (3x) 0.519 $33,187

Expense 3.308 $211,556
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4.1. Capital Efficiency—The capital expense at trade initiation for the entire portfolio
corresponds to the margin requirement for the options sold net of the premia received (1.557
BTC) plus the premia paid for the long options (0.472 BTC) plus the LP position (0.760 BTC)
plus the perpetuals margin (0.519), resulting in 3.308 BTC (see Figure 1).

The best liquidity for options is available for near at-the-money and out of the money puts
and calls. In-the-money puts and calls typically have higher spreads and lower liquidity. We are
buying put and call options with strikes between PL and PU and are therefore trading-off hedge
accuracy for hedging costs.25 Figure 3 pictures the hedge accuracy by comparing the constructed
replicating portfolio (the negative value of the hedge at maturity) with the value of the LP pool at
maturity. The net positive option premia are achieved because the proceeds from selling an out
of the money put option with strike PL and selling an out of the money call option with strike PU

exceeds the costs for the put and call options bought with strikes between PL and PU (using taker
prices).

To assess the amount we receive at maturity, note that we receive back the entire margin
expended for the perpetuals. The reason is that the P&L that is added to the perpetual margin
(subtracted when at loss), equals the negative P&L in the options margin that we hedge. Similarly,
the margin in the options can be recovered in full due to the corresponding P&L in the liquidity
pool position. Therefore the amount we receive at maturity corresponds to the dollar value of
the margin at trade initiation $200,446 (consisting of the options margin of $167,259 and the
perpetuals margin of $33,187), plus the hedged value of the LP position ($48,612) plus proceeds
from funding rates and trading fees from the LP position. Note that we have already subtracted
the option premia received from the capital expended.

Fig. 1. The delta-neutral liquidity provision strategy involves liquidity provision (“LP”),
selling options (“Premia Short”), buying options (“Premia Long”), margin for the options sold
(“Margin Options”), and margin for hedging the margin in BTC assuming a 3x leverage.

As a consequence, to assess earnings, our metric is the income from LP trading fees and per-
petuals funding rate, relative to the expense at initiation. We now analyze this metric for different
scenarios of funding rates and trading fee income. DefiLlama shows historical annualized yields
for WBTC-USDC, from which we can infer that yields of 3%-15% are realistic assumptions.
Perpetual funding rates are typically positive and hover around 1 basis point (0.01% for an 8-hour
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Fig. 2. Annualized yield income relative to the capital deployed for different scenarios. The
plot shows different assumptions for annualized yields from trading fees of the LP position
(x-axis), different assumptions for annualized perpetual funding rates, resulting in a return on
the capital deployed. For example, if the annualized funding rate is 10% and the annualized
trading fees add up to 5% over the duration of the trade, the amount earned relative to the
capital expended equals an annualized 9%. Note that, if we were to use a dated future, the
carry would be locked-in from the start.

period).26 From Deribit and The Block, we can see that over the course of 2024 funding rates are
mostly positive and we consider annualized funding rates from -5% to 15% realistic assumptions
for our assessment.27 From these yield scenarios, we calculate the resulting portfolio yield in
Figure 2. We can see that the portfolio yield can go negative if perpetual funding rates turn
negative. Note that we could lock-in the carry by purchasing a dated future instead.

4.2. Risk Management—Maintenance margin requirement for the option portfolio and the
short future have to be met during the entire holding duration of the position. Even though we
have a static hedge, the strategy calls for active risk management. First, the margin for the short
future needs to be increased as the price of the underlying soars, or the notional can be reduced.
Second, the margin of the options portfolio needs to be maintained.

Deribit allows for portfolio margins that are limited by the “maximal loss”, a figure calculated
with the Black-Scholes model incorporating stressed parameters.28 A proxy for the maximal
loss is the intrinsic value of the portfolio; if the loss in the intrinsic value is limited, so is the
point in time estimate using Black-Scholes. Figure 3 shows that the portfolio value no longer
increases above the upper limit PU . At prices above PU the LP position consists of USDC only.
Therefore, the option portfolio’s intrinsic loss is bounded by the value of the option portfolio at
PU and additional funds for maintaining the option portfolio are limited.
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Fig. 3. This plot shows the liquidity provision value at maturity for a particular choice of lower
and upper limits at PL = $59,000 and PU = $69,000. The dotted line depicts the negative
end-of-period value of a hedge portfolio with 4 short straddles, a synthetic long at PL and
a synthetic short at PU . The underlying options are detailed in Appendix Table 4. We can
see that the negative hedge closely approximates the liquidity provision value at maturity,
rendering the hedge effective.
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5. Conclusion

We derived a hedge portfolio for market neutral liquidity provision in concentrated liquidity
pools. The hedge is derived in a “model-free” manner, that is, making no assumption on the
underlying price process other than it being a positive process. In the empirical part of this paper,
we find that only a few options are sufficient to provide an accurate hedge. The availability of
options in the current market environment severely restricts the price-range, maturity, size, and
choice of tokens for the liquidity provision position. The initial margin required for the options
portfolio is about twice the amount of the liquidity provision position. Due to the large amount of
margin compared to the liquidity provision position, the margin held in base-currency requires a
hedge, too. Interestingly, the hedge portfolio is an additional source of earnings. That is, the net
premia for the option portfolio are positive, and the margin hedge typically earns a futures carry.
The economic intuition for the negative hedge costs is that the option portfolio forgoes the upside
when prices increase beyond the upper limit of liquidity provision (PU ), similar to a covered call.
Even though we have a static hedge at hand, the strategy requires dynamic risk management for
the maintenance margin requirement.
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Appendix A: Uniswap V3 Ticksize

The price ranges for liquidity providers are discrete and not spaced equally. Discrete prices
are determined as P = 1.0001t , where t is the discrete tick index. Different fee tiers can have
different tick spacings. If the tick spacing is 1, liquidity can be placed at every tick. If tick
spacing is 60, liquidity can only be placed at t equal to integer multiples of 60. For example, the
0.3% fee tier of WBTC/USDC on Uniswap has a tickspacing of 60, see https://etherscan.
io/address/0x99ac8cA7087fA4A2A1FB6357269965A2014ABc35#readContract.

Appendix B: Volume Ranking of AMM Types

Table 3 shows that concentrated liquidity DEXs are the most prominent type of DEXs at the time
of writing, by an order of magnitude.

Table 3. Seven day trading volume (billion USD) and total value locked (TVL, billion USD) as
of July 21, 2024. Source: https://defillama.com/dexs.

Venue 7D Volume TVL Type
Uniswap v3 11.31 3.48 Concentrated Liquidity
PancakeSwap v3 2.22 0.22 Concentrated Liquidity
Uniswap v2 1.98 2.36 Constant Product Market Maker
Curve DEX 1.24 0.06 Hybrid Function Market Maker
Balancer V2 0.37 0.06 Constant Mean Market Maker

Appendix C: Delta and Gamma of Concentrated Liquidity

We differentiate the pool value function, Equation (7), with respect to the price to get the position
delta:

∂V (P)
∂P

=


`( 1√

PL
− 1√

PU
) P < PL

`
(

1√
P
− 1√

PU

)
PL < P < PU

0 P > PU .

(18)

The delta hedge, −∂V (P)/∂P, corresponds to shorting the amount of token x that the liquidity
provider owns for a given price P, and therefore Equation (18) coincides with Equation (5). The
position’s Gamma is given by

∂ 2V (P)
∂P2 =

{
− `

2P3/2 PL < P < PU

0 P 6∈ [PL,PU ]
(19)

Figure 4 shows an example of the liquidity provision value as a function of the price, the delta,
and the token composition.

Appendix D: Detailed Construction of the Hedge

Some exchanges allow dedicated market makers to write options, but not regular clients (Binance,
for example). Deribit quotes their European BTCUSD options in BTC. The minimal position size
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Fig. 4. LP value, the price delta, and the token composition as a function of the price. The
vertical lines denote the lower and upper bounds of the concentrated liquidity provision.

is 0.1 contracts (corresponding to 0.1 BTC), and the tick size is 0.0001. The minimal position
size only allows accurate hedges for liquidity provision portfolios starting at around $25,000
at prices prevalent at the time of writing. Table 4 presents the hedge portfolio in detail. We
calculate the amount for each call and put option required according to the equation for Ĥ. We
use “taker prices”, that is, when we write options (calls for PL and puts for PU ), we use the
bid price; otherwise, we use ask prices. For the margin requirement we are assuming standard
position margins, for which each position has its margin requirements calculated separately. We
want to sell in-the-money call and put options. Deribit requires the following margin,
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Max (Max (0.15 - OTM Amount/Underlying Mark Price, 0.1)

+ Mark Price of the Option, Maintenance Margin),

which reduces to 15% plus the option mark-price times the number of contracts. Long options do
not require any margin.

Table 4. Hedge Portfolio. The hedge portfolio consists of options struck at four different prices
from $59,000 to $69,000 on 19 July 2024 with maturity 30 August 2024. Figure 3 depicts
the hedge accuracy for this choice. The premia are ask prices, unless we write the option, in
which case we use bid prices (italic), denoted in BTC. The amount of calls/puts is denoted
in the number of contracts (1 contract has one underlying BTC as an asset) and calculated
according to the hedge approximation Ĥ described in this paper. The costs are calculated as
the amount times the corresponding premium, a number in BTC. The hedge portfolio is a
net seller of options that results in 0.586 BTC (=0.347+0.239) in income. However, note that
there is a considerable amount of margin that has to be posted for the short positions, so the
premia earned are used as margin collateral until maturity.

Strike Put Premium Call Premium Amount Call Amount Put Cost Call Cost Put
59000 0.0350 0.122 -5.07 5.24 -0.618 0.183
63000 0.0610 0.0905 0.14 0.14 0.013 0.008
66000 0.0865 0.0685 0.11 0.11 0.008 0.010
69000 0.095 0.052 4.82 -4.64 0.251 -0.440

Sum -0.347 -0.239
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