
 ISSN 2379-5980 (online)
 associated article DOI

10.5915/LEDGER.2017.48

	
	

Equihash: Asymmetric Proof-of-Work Based
on the Generalized Birthday Problem: Open

Review
Authors: Alex Biryukov,† Dmitry Khovratovich,‡

Reviewers: Reviewer A, Reviewer B

Abstract. The final version of the paper “Equihash: Asymmetric Proof-of-Work Based on
the Generalized Birthday Problem” can be found in Ledger Vol. 2 (2017) 1-30, DOI
10.5915/LEDGER.2017.48. There were two reviewers who responded, neither of whom
have requested to waive their anonymity at present, and are thus listed as A and B. After
initial review (1A), the author submitted a revised submission and responses (1B). The
revised submission was reviewed once again by reviewers A and B, who determined that
the author had adequately and substantively addressed their concerns, thus completing the
peer-review process. Authors’ responses in are in bullet form.

1A. Review

Reviewer A:

The paper proposes a proof-of-work (PoW) scheme based on a problem called the generalized
birthday problem. The primary goal is to develop a PoW scheme for cryptocurrency with
several properties:

1. (tuneable costs) the cost of producing a PoW can be adjusted/controlled,

2. (equitable costs) the amortized cost of producing a PoWs on an ASIC is not much lower
than the cost of producing a PoW on standard computer architectures (e.g., desktops), and

3. (extreme asymmetry) the cost of verifying a proof-of-work should be as inexpensive as
possible.

The problem is well-motivated. For example, Hashcash, the PoW used in Bitcoin, satisfies
properties 1 and 3 but not 2. The (undesirable) result is that a small number of miners (with

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
†A. Biryukov (alex.biryukov@uni.lu) is a full professor of Cryptography and Information Security in the Computer Science and

Communications Research Unit at the University of Luxembourg: 16B1873NxbzzX2xNhW2GzYbCBJtjxzF23j
‡D. Khovratovich is a post-doctoral researcher at the CryptoLUX cryptography research group at the University of Luxembourg:

1PbreZUDQjpVWFLBSZp3aimaqSyoiLa5eT

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

ii

ASICs) control most of the hash power in the Bitcoin ecosystem. PoWs based on memory
hard functions (e.g., SCRYPT) potentially satisfy properties 1 and 2, but the cost of verifying
a PoW is undesirably high.

The authors present a PoW candidate based on the Generalized Birthday Paradox and provide
some arguments that it satisfies all three properties. One of the primary technical tools they
use is an idea called `algorithm binding.' The goal is to tie the PoW solution to a particular
execution of Wagner's algorithm for the generalized birthday paradox problem so that the
amortized cost of computing multiple PoW solutions is equal to the cost of computing one
PoW solution.

The equihash scheme relies on several key assumptions: (hardware/memory) it is not possible
to exceed memory bandwidth 1 TB/s on chip, (parallel sorting) any parallel sorting
algorithm requires high memory bandwidth and (no shortcuts) Wagner's algorithm requires
sorting. These assumptions need to be acknowledged/discussed earlier in the paper.
Furthermore, as these assumptions are crucial the discussion around these points needs to be
expanded. In particular, the paper only cites [33] and [40] when discussing parallel/sequential
sorting. Both papers are several (2012) years old so I would not be shocked if more recent
GPUs/ASICs have better performance.

Technical Comments:

Proposition 1 only tells us how many solutions we get on average using Algorithm 1 with a
specific memory size. It would be helpful to (at least briefly) comment on variance (e.g., the
proposition statement does not rule out the possibility that we get 2million solutions w.p.
10^{-6} and 0 solutions w.p 1-10^{-6}). Also during the first step we actually expect (N
\choose 2)*2^{-n/(k+1)} = 2^{n/(k+1)+1} - 1 = N-1 entries for the second table. For the third
table it will be N-2+o(1) etc... I think you will still end up with (almost) two solutions in
expectation, but the exact formula will be slightly more complicated.

The notation in II.A (Steep time-space tradeoffs) needs to be clarified (e.g., I don't understand
the term max_{A_R} M(A_R) as M(A_R) is never defined. Does A_R denote the standard
implementation?). How do M_0 and M relate to each other? Does C_R(q) compare the
performance of a fixed algorithm A_R as memory varies or are we comparing the reference
distribution with the best known algorithms with memory M/q?

Proposition 3 suggests that the amortized cost of producing a PoW solution drops dramatically
as memory increases. Thus, an adversary with less memory will pay a steep cost. However,
I am not convinced that this is actually a positive result for Equihash as it suggests that the
only effective way to mine is to have the most memory (e.g., miners may prefer to deviate
from algorithm 2 to produce the PoW). It seems like we also want the property that we cannot
effectively make use of memory M > M_0, where M_0 is the memory used by the reference
implementation. Furthermore, I don't think that the ``algorithm-binding technique" fixes this
particular concern.

Similarly, proposition 7 seems to indicate that the scheme is broken in theoretical sense (e.g.,

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

iii

on an parallel ASIC AT costs can be decreased dramatically). In particular, there is an attack
with parallelism p that reduces the time to find an algorithm-bound PoW solution by (roughly)
p. The (potentially) saving factor is that the required memory bandwidth also grows by a
factor of p. Thus, this particular attack may be unrealistic in practice (assuming that no
ASIC/memory chip can be developed that accommodating). Proposition 7 does leave open the
possibility of other (yet unknown) practical parallel attacks.

Minor:

Footnote 1: "are now integrated"

The authors only cite their own paper [15] during their discussion of time-space tradeoffs of
MHFs in the introduction. See High Parallel Complexity Graphs and Memory-Hard
Functions. Alwen, J. and Serbinenko, V. STOC 2015.

(More recent)

Balloon Hashing: a Provably Memory-Hard Function with a Data-Independent Access
Pattern. Boneh Corrigan-Gibbs, Schechter. https://eprint.iacr.org/2016/027.pdf

Efficiently Computing Data Independent Memory Hard Functions. Alwen, J. and Blocki, J.
CRYPTO 2016.

Reviewer B:

On the whole I think this submission merits publication at this venue. It is relatively well
written and makes a nice contribution to the area of ASIC resistant computation which is itself
undoubtedly a well motivated topic of research in the field of cryptocurrencies.

I particularly like the idea of using the generalized birthday bound as a basses for memory-
hard problems. From a theoretical perspective the problem has been previously studied in
various forms which provides us with various tools (algorithms) and related lower-bounds for
reasoning about the construction. More practically it is simple to describe, understand and
implement and the resulting asymmetry between prover & verifier are extreme. It also seems
to lend itself well to tuning various lower-bounds on the resources required to produce proofs.
It is also very helpful that that an implementation is available.

However I do have two concerns with the current writeup and I strongly suggest they should
be addressed before the final version is submitted for publication.

1) The writeup is quite unclear about what is being conjectured vs. what is being proven when
it comes to security. It would benefit greatly from a paragraph summarizing what is know,
what is shown and what remains open/is being conjectured.

In particular my understanding is that in order for the construction to be a good PoW

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

iv

according to the authors own criterion it must be that no algorithm solves the "algorithm-
bound" version of the k-XOR problem significantly better then the improved Wagner's
algorithm and that no better optimizations exists for Wagner's algorithm then the ones listen in
the writeup. Only then do we get the guarantee that the construction is "Optimization-free". In
other words, only then do get the guarantee that an adversary has no advantage over the honest
parties. In my opinion this is an absolutely crucial feature of any PoW construction. Why this
should be true for the proposed construction should be made much clearer given it's
importance.

Indeed the closest I could find for any such justification may be the sentence "Therefore, if we
pre-fix the positions where 2^l-XORs have zero bits, we bind the user to a particular algorithm
flow." But this sentence makes little sense to me (which is why I think it needs to be either
much expanded upon, or else out right removed). On a high level, my understanding of the
authors intentions here are based on the observation that Wagner's algorithm produces a
particular subset of possible solutions to the k-XOR problem so the authors modify the
problem to only accept solutions from this subset. However to then make the leap that this
means _any_ adversary must necessarily use Wagner's, or even just a "Wagner-like" algorithm
is a very big leap. In particular I think that A) "algorithm flow" or "wagner like" or similar
terms should be made much more clear and precise and B) this conjecture upon which security
is based should be made very explicit and highlighted. After all it is an important starting
point for future work wishing to confirm or refute the security of the protocol proposed in this
work.

To be clear, I am by no means asserting there to be a problem with the conjecture, or even that
there is somehow good reason to believe it is false. Simply that if such a conjecture is needed
for full security then it should be stated both explicitly and precisely. (Though I suspect
making it precise may turn out to be not be that easy... e.g. is it clear that no third type of
optimization, other than the two listed at the top of page 7, can not exist for Wagner's
algorithm? Put differently how can one characterize the set of algorithms for which security is
actually shown in the submission?) Any evidence why such a conjecture should hold would
also be greatly appreciated and significantly strengthen this work.

2) The introduction repeatedly confuses memory-bound and memory-hard functions. These
are not the same and using the terms and corresponding results interchangeably should
definitely be avoided. Memory-bound means many cache misses are needed to compute the
function. "Memory-hard" means a lot of memory is needed to compute the function. While the
later may (at least in some sense) imply the former the converse is not true. For example I
strongly disagree with the discussion concerning [22]. [22] does the same (i.e. uses the same
model, security definition and a closely related proof) as [20] and has the same intuitive goal
and motivation as [6, 20]. Yet in the submission, [22] is described as being "memory-hard"
while [6, 22] are said to be "memory-intensive" (as an aside: why introduce a new term here?
why not use the existing one used in those and other works: "memory-bound"?). However
even a brief inspection of [22] and [20] show that they are actually very similar results. Indeed
[22] is formulated explicitly as improving on the construction of [20]. More generally to see
the difference between memory-bound and memory-hard consider a machine with say 1MB
cache, doing random pointer jumping in a 2MB array of incompressible bits (i.e. essentially

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

v

the construction of [20] and [22]). This is a memory-bound function as computing it (with any
algorithm) results in many cache misses (as proved in [22, 20]). However it is not memory-
hard in that it doesn't require a lot of memory (only 2MB). To be clear: the goal of [22] (and
[6, 22]) was not that an adversary requires a lot of memory. just that they require a lot of
memory accesses. But this can already be achieved with not very much more memory than
cache. Indeed, this is why increasing the difficulty parameter for such memory-bound function
constructions only increases the number of pointer jumps, but not the size of the array in
memory.

Other small comments

- Abstract: "The proof-of-work" -> "Proofs-of-work"

- Page 1: Botnets seem a bad motivation for this since they consist of the same type of
hardware as honest users. given that botnets are used for other intensive computation (such as
bitcoin mining) it would seem that hiding intensive resource usage from an infected hosts
owner is not too great a problem (especially given the extreme under-usage of the hardware in
most home PCs.)... ASIC/FPGA resistance is a far better motivation for this submission.

- Page 2: "is expected" -> "we expect" Also [23] has been implemented and is available as
part of the github project working towards a full spacemint implementation. If the submission
wants claim that [23] is not practical it needs to explain what is wrong with the current
implementation.

- Page 2: It would be good to explain why not being amortization-free should be considered a
problem for the Proof-of-Space protocols in [23] given that [37] uses them in precisely one of
the main applications motivating the PoW in the submission: namely a cryptocurrency. Also I
don't understand what is meant by "the computational penalties are guaranteed only after the
memory reduction by a logarithmic factor". This should be made clearer and it should also be
clarified why the authors believe their results address this problem. (If the statement refers to
what the authors in [23] were able to prove in terms of a security statement then I feel this to
be rather misleading criticism of [23]. After all 1) no "attack" on [37] is known to exist
between the gap of what is proven and what one would ideally desire and 2) I am unclear on
why the submission should have a significantly better state of affairs in terms of actual
security guarantees. As discussed above, my understanding is that security of the submission
is based on a strong lowerbound conjecture (not unlike [23] which also relies on a conjecture).
Given the reliance on, a priori incomparable, conjectures criticizing exact security seems... a
bit misleading.)

- Page 3: in the numerator in the equation "M/q" -> "M_S0/q"

- The authors highlight a useful property called "Progress-free Process" but then never refer to
it again. It might be nice to add in a comment somewhere high lighting why the submission
enjoys this property (or at least that it does).

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

vi

- I'm slightly unclear as to why the authors believe that a bitcoin like PoW but using say
Argon2d (being faster then scrypt to avoid the Litecoin problem) would not constitute a PoW
according to their criterion. For example such a protocol exhibits the required asymmetry: The
verifier only performs a single evaluation of the hash function compared to the exponentially
many evaluations by the prover. In fact such a protocol would also be progress-free, allow for
tuning various resource constraints and lend itself well to implementation. I doubt I will be the
only one with such thoughts so I think it would help if the authors address them.

1B. Authors’ Response

Reviewer A:

The paper proposes a proof-of-work (PoW) scheme based on a problem called the generalized
birthday problem. The primary goal is to develop a PoW scheme for cryptocurrency with
several properties:

1. (tuneable costs) the cost of producing a PoW can be adjusted/controlled,

2. (equitable costs) the amortized cost of producing a PoWs on an ASIC is not much lower
than the cost of producing a PoW on standard computer architectures (e.g., desktops), and

3. (extreme asymmetry) the cost of verifying a proof-of-work should be as inexpensive as
possible.

The problem is well-motivated. For example, Hashcash, the PoW used in Bitcoin, satisfies
properties 1 and 3 but not 2. The (undesirable) result is that a small number of miners (with
ASICs) control most of the hash power in the Bitcoin ecosystem. PoWs based on memory
hard functions (e.g., SCRYPT) potentially satisfy properties 1 and 2, but the cost of verifying
a PoW is undesirably high.

The authors present a PoW candidate based on the Generalized Birthday Paradox and provide
some arguments that it satisfies all three properties. One of the primary technical tools they
use is an idea called `algorithm binding.' The goal is to tie the PoW solution to a particular
execution of Wagner's algorithm for the generalized birthday paradox problem so that the
amortized cost of computing multiple PoW solutions is equal to the cost of computing one
PoW solution.

The equihash scheme relies on several key assumptions: (hardware/memory) it is not possible
to exceed memory bandwidth 1 TB/s on chip, (parallel sorting) any parallel sorting algorithm
requires high memory bandwidth and (no shortcuts) Wagner's algorithm requires sorting.
These assumptions need to be acknowledged/discused earlier in the paper. Furthermore, as
these assumptions are crucial, the discussion around these points needs to be expanded. In
particular, the paper only cites [33] and [40] when discussing parallel/sequential sorting. Both

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

vii

papers are several (2012) years old so I would not be shocked if more recent GPUs/ASICs
have better performance.

Technical Comments:

Proposition 1 only tells us how many solutions we get on average using Algorithm 1 with a
specific memory size. It would be helpful to (at least briefly) comment on variance (e.g., the
proposition statement does not rule out the possibility that we get 2million solutions w.p.
10^{-6} and 0 solutions w.p 1-10^{-6}). Also during the first step we actually expect (N
\choose 2)*2^{-n/(k+1)} = 2^{n/(k+1)+1} - 1 = N-1 entries for the second table. For the third
table it will be N-2+o(1) etc... I think you will still end up with (almost) two solutions in
expectation, but the exact formula will be slightly more complicated.

• We have commented on the variance after Proposition 1.

The notation in II.A (Steep time-space tradeoffs) needs to be clarified (e.g., I don't understand
the term max_{A_R} M(A_R) as M(A_R) is never defined. Does A_R denote the standard
implementation?). How do M_0 and M relate to each other? Does C_R(q) compare the
performance of a fixed algorithm A_R as memory varies or are we comparing the reference
distribution with the best known algorithms with memory M/q?

• We have clarified this paragraph.

Proposition 3 suggests that the amortized cost of producing a PoW solution drops dramatically
as memory increases. Thus, an adversary with less memory will pay a steep cost. However, I
am not convinced that this is actually a positive result for Equihash as it suggests that the only
effective way to mine is to have the most memory (e.g., miners may prefer to deviate from
algorithm 2 to produce the PoW). It seems like we also want the property that we cannot
effectively make use of memory M > M_0, where M_0 is the memory used by the reference
implementation. Furthermore, I don't think that the ``algorithm-binding technique" fixes this
particular concern.

• We have discussed this in a new subsection V.D. Unfortunately there is no way to
prevent miners from slight optimizations in either time or memory from the reference
implementation, but we can prove that these optimizations are limited.

Similarly, proposition 7 seems to indicate that the scheme is broken in theoretical sense (e.g.,
on an parallel ASIC AT costs can be decreased dramatically). In particular, there is an attack
with parallelism p that reduces the time to find an algorithm-bound PoW solution by (roughly)
p. The (potentially) saving factor is that the required memory bandwidth also grows by a
factor of p. Thus, this particular attack may be unrealistic in practice (assuming that no
ASIC/memory chip can be developed that accommodating). Proposition 7 does leave open the
possibility of other (yet unknown) practical parallel attacks.

• We have added a totally new discussion on parallel attacks in Section VI.B. However,
the practicality of them seems to be pure speculation.

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

viii

Minor:

Footnote 1: "are now integrated"

The authors only cite their own paper [15] during their discussion of time-space tradeoffs of
MHFs in the introduction. See High Parallel Complexity Graphs and Memory-Hard
Functions. Alwen, J. and Serbinenko, V. STOC 2015.

(More recent)

Balloon Hashing: a Provably Memory-Hard Function with a Data-Independent Access
Pattern. Boneh Corrigan-Gibbs, Schechter. https://eprint.iacr.org/2016/027.pdf

Efficiently Computing Data Independent Memory Hard Functions. Alwen, J. and Blocki, J.
CRYPTO 2016.

• added

Reviewer B:

On the whole I think this submission merits publication at this venue. It is relatively well
written and makes a nice contribution to the area of ASIC resistant computation which is itself
undoubtedly a well motivated topic of research in the field of cryptocurrencies.

I particularly like the idea of using the generalized birthday bound as a basses for memory-
hard problems. From a theoretical perspective the problem has been previously studied in
various forms which provides us with various tools (algorithms) and related lower-bounds for
reasoning about the construction. More practically it is simple to describe, understand and
implement and the resulting asymmetry between prover & verifier are extreme. It also seems
to lend itself well to tuning various lower-bounds on the resources required to produce proofs.
It is also very helpful that that an implementation is available.

However I do have two concerns with the current writeup and I strongly suggest they should
be addressed before the final version is submitted for publication.

1) The writeup is quite unclear about what is being conjectured vs. what is being proven when
it comes to security. It would benefit greatly from a paragraph summarizing what is know,
what is shown and what remains open/is being conjectured.
In particular my understanding is is that in order for the construction to be a good PoW
according to the authors own criterion it must be that no algorithm solves the "algorithm-
bound" version of the k-XOR problem significantly better then the improved Wagner's
algorithm and that no better optimizations exists for Wagner's algorithm then the ones listen in
the writeup. Only then do we get the guarantee that the construction is "Optimization-free". In

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

ix

other words, only then do get the guarantee that an adversary has no advantage over the honest
parties. In my opinion this is an absolutely crucial feature of any PoW construction. Why this
should be true for the proposed construction should be made much clearer given it's
importance.
Indeed the closest I could find for any such justification may be the sentence "Therefore, if we
pre-fix the positions where 2^l-XORs have zero bits, we bind the user to a particular algorithm
flow." But this sentence makes little sense to me (which is why I think it needs to be either
much expanded upon, or else out right removed). On a high level, my understanding of the
authors intentions here are based on the observation that Wagner's algorithm produces a
particular subset of possible solutions to the k-XOR problem so the authors modify the
problem to only accept solutions from this subset. However to then make the leap that this
means any adversary must necessarily use Wagner's, or even just a "Wagner-like" algorithm
is a very big leap. In particular I think that A) "algorithm flow" or "wagner like" or similar
terms should be made much more clear and precise and B) this conjecture upon which security
is based should be made very explicit and highlighted. After all it is an important starting
point for future work wishing to confirm or refute the security of the protocol proposed in this
work.

To be clear, I am by no means asserting there to be a problem with the conjecture, or even that
there is somehow good reason to believe it is false. Simply that if such a conjecture is needed
for full security then it should be stated both explicitly and precisely. (Though I suspect
making it precise may turn out to be not be that easy... e.g. is it clear that no third type of
optimization, other than the two listed at the top of page7, can not exist for Wagner's
algorithm? Put differently how can one characterize the set of algorithms for which security is
actually shown in the submission?) Any evidence why such a conjecture should hold would
also be greatly appreciated and significantly strengthen this work.

• We have discussed this in a new subsection V.D

2) The introduction repeatedly confuses memory-bound and memory-hard functions. These
are not the same and using the terms and corresponding results interchangeably should
definitely be avoided. Memory-bound means many cache misses are needed to compute the
function. "Memory-hard" means a lot of memory is needed to compute the function. While the
later may (at least in some sense) imply the former the converse is not true. For example I
strongly disagree with the discussion concerning [22]. [22] does the same (i.e. uses the same
model, security definition and a closely related proof) as [20] and has the same intuitive goal
and motivation as [6,20]. Yet in the submission, [22] is described as being "memory-hard"
while [6, 22] are said to be "memory-intensive" (as an aside: why introduce a new term here?
why not use the existing one used in those and other works: "memory-bound"?). However
even a brief inspection of [22] and [20] show that they are actually _very_ similar results.
Indeed [22] is formulated explicitly as improving on the construction of [20]. More generally
to see the difference between memory-bound and memory-hard consider a machine with say
1MB cache, doing random pointer jumping in a 2MB array of incompressible bits (i.e.
essentially the construction of [20] and [22]). This is a memory-bound function as computing
it (with any algorithm) results in many cache misses (as proved in [22, 20]). However it is not
memory-hard in that it doesn't require a lot of memory (only 2MB). To be clear: the goal of

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

x

[22] (and [6, 22]) was not that an adversary requires a lot of memory. just that they require a
lot of memory accesses. But this can already be achieved with not very much more memory
than cache. Indeed, this is why increasing the difficulty parameter for such memory-bound
function constructions only increases the number of pointer jumps, but not the size of the
array in memory.

• We have clarified the introduction on these points.

Other small comments

- Abstract: "The proof-of-work" -> "Proofs-of-work"

- Page 1: Botnets seem a bad motivation for this since they consist of the same type of
hardware as honest users. given that botnets are used for other intensive computation (such as
bitcoin mining) it would seem that hiding intensive resource usage from an infected hosts
owner is not too great a problem (especially given the extreme under-usage of the hardware in
most home PCs.)... ASIC/FPGA resistance is a far better motivation for this submission.

• added

- Page 2: "is expected" -> "we expect" Also [23] has been implemented and is available as
part of the github project working towards a full spacemint implementation. If the submission
wants claim that [23] is not practical it needs to explain what is wrong with the current
implementation.

• added

- Page 2: It would be good to explain why not being amortization-free should be considered a
problem for the Proof-of-Space protocols in [23] given that [37] uses them in precisely one of
the main applications motivating the PoW in the submission: namely a cryptocurrency. Also I
don't understand what is meant by "the computational penalties are guaranteed only after the
memory reduction by a logarithmic factor". This should be made clearer and it should also be
clarified why the authors believe their results address this problem. (If the statement refers to
what the authors in [23] were able to prove in terms of a security statement then I feel this to
be rather misleading criticism of [23]. After all 1) no "attack" on [37] is known to exist
between the gap of what is proven and what one would ideally desire and 2) I am unclear on
why the submission should have a significantly better state of affairs in terms of actual
security guarantees. As discussed above, my understanding is that security of the submission
is based on a strong lowerbound conjecture (not unlike [23] which also relies on a conjecture).
Given the reliance on, a priori incomparable, conjectures criticising exact security seems... a
bit misleading.)

• added

LEDGER VOL 2 (2017) SUPPLEMENTAL TO 1−30
	

l e d g e r j o u r n a l . o r g

	
ISSN 2379-5980 (online)

associated article DOI
10.5915/LEDGER.2017.48	

	
	

xi

- Page 3: in the numerator in the equation "M/q" -> "M_S0/q"

- The authors highlight a useful property called "Progress-free Process" but then never refer to
it again. It might be nice to add in a comment somewhere high lighting why the submission
enjoys this property (or at least that it does).

• The progress-free property of Equihash highly depends on the parameters, and we
believe that for those taking less than a second it can be considered progress-free, and
for others it is discussible.

- I'm slightly unclear as to why the authors believe that a bitcoin like PoW but using say
Argon2d (being faster then scrypt to avoid the Litecoin problem) would not constitute a PoW
according to their criterion. For example such a protocol exhibits the required asymmetry: The
verifier only performs a single evaluation of the hash function compared to the exponentially
many evaluations by the prover. In fact such a protocol would also be progress-free, allow for
tuning various resource constraints and lend itself well to implementation. I doubt I will be the
only one with such thoughts so I think it would help if the authors address them.

• added

