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Abstract.  The final version of the paper “Equihash: Asymmetric Proof-of-Work Based on 
the Generalized Birthday Problem” can be found in Ledger Vol. 2 (2017) 1-30, DOI 
10.5915/LEDGER.2017.48. There were two reviewers who responded, neither of whom 
have requested to waive their anonymity at present, and are thus listed as A and B. After 
initial review (1A), the author submitted a revised submission and responses (1B). The 
revised submission was reviewed once again by reviewers A and B, who determined that 
the author had adequately and substantively addressed their concerns, thus completing the 
peer-review process. Authors’ responses in are in bullet form. 

 

1A. Review 

 
Reviewer A: 
  
The paper proposes a proof-of-work (PoW) scheme based on a problem called the generalized 
birthday problem. The primary goal is to develop a PoW scheme for cryptocurrency with 
several properties:  
 
1. (tuneable costs) the cost of producing a PoW can be adjusted/controlled,  
 
2. (equitable costs) the amortized cost of producing a PoWs on an ASIC is not much lower 
than the cost of producing a PoW on standard computer architectures (e.g., desktops), and 
 
3. (extreme asymmetry) the cost of verifying a proof-of-work should be as inexpensive as 
possible. 
 
The problem is well-motivated. For example, Hashcash, the PoW used in Bitcoin, satisfies 
properties 1 and 3 but not 2. The (undesirable) result is that a small number of miners (with 
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ASICs) control most of the hash power in the Bitcoin ecosystem. PoWs based on memory 
hard functions (e.g., SCRYPT) potentially satisfy properties 1 and 2, but the cost of verifying 
a PoW is undesirably high. 
 
The authors present a PoW candidate based on the Generalized Birthday Paradox and provide 
some arguments that it satisfies all three properties. One of the primary technical tools they 
use is an idea called `algorithm binding.' The goal is to tie the PoW solution to a particular 
execution of Wagner's algorithm for the generalized birthday paradox problem so that the 
amortized cost of computing multiple PoW solutions is equal to the cost of computing one 
PoW solution. 
 
The equihash scheme relies on several key assumptions: (hardware/memory) it is not possible 
to exceed memory bandwidth 1 TB/s on chip, (parallel sorting) any parallel sorting 
algorithm requires high memory bandwidth and (no shortcuts) Wagner's algorithm requires 
sorting. These assumptions need to be acknowledged/discussed earlier in the paper. 
Furthermore, as these assumptions are crucial the discussion around these points needs to be 
expanded. In particular, the paper only cites [33] and [40] when discussing parallel/sequential 
sorting. Both papers are several (2012) years old so I would not be shocked if more recent 
GPUs/ASICs have better performance. 

 
Technical Comments: 
 
Proposition 1 only tells us how many solutions we get on average using Algorithm 1 with a 
specific memory size. It would be helpful to (at least briefly) comment on variance (e.g., the 
proposition statement does not rule out the possibility that we get 2million solutions w.p. 
10^{-6} and 0 solutions w.p 1-10^{-6}). Also during the first step we actually expect (N 
\choose 2)*2^{-n/(k+1)} = 2^{n/(k+1)+1} - 1 = N-1 entries for the second table. For the third 
table it will be N-2+o(1) etc... I think you will still end up with (almost) two solutions in 
expectation, but the exact formula will be slightly more complicated. 
 
The notation in II.A (Steep time-space tradeoffs) needs to be clarified (e.g., I don't understand 
the term max_{A_R} M(A_R) as M(A_R) is never defined. Does A_R denote the standard 
implementation?). How do M_0 and M relate to each other? Does C_R(q) compare the 
performance of a fixed algorithm A_R as memory varies or are we comparing the reference 
distribution with the best known algorithms with memory M/q?  
 
Proposition 3 suggests that the amortized cost of producing a PoW solution drops dramatically 
as memory increases. Thus, an adversary with less memory will pay a steep cost. However, 
I am not convinced that this is actually a positive result for Equihash as it suggests that the 
only effective way to mine is to have the most memory (e.g., miners may prefer to deviate 
from algorithm 2 to produce the PoW). It seems like we also want the property that we cannot 
effectively make use of memory M > M_0, where M_0 is the memory used by the reference 
implementation. Furthermore, I don't think that the ``algorithm-binding technique" fixes this 
particular concern. 
 
Similarly, proposition 7 seems to indicate that the scheme is broken in theoretical sense (e.g., 
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on an parallel ASIC AT costs can be decreased dramatically). In particular, there is an attack 
with parallelism p that reduces the time to find an algorithm-bound PoW solution by (roughly) 
p. The (potentially) saving factor is that the required memory bandwidth also grows by a 
factor of p. Thus, this particular attack may be unrealistic in practice (assuming that no 
ASIC/memory chip can be developed that accommodating). Proposition 7 does leave open the 
possibility of other (yet unknown) practical parallel attacks.   
 
Minor: 
 
Footnote 1: "are now integrated" 
 
The authors only cite their own paper [15] during their discussion of time-space tradeoffs of 
MHFs in the introduction. See High Parallel Complexity Graphs and Memory-Hard 
Functions. Alwen, J. and Serbinenko, V. STOC 2015. 
 
(More recent) 
 
Balloon Hashing: a Provably Memory-Hard Function with a Data-Independent Access 
Pattern. Boneh Corrigan-Gibbs, Schechter. https://eprint.iacr.org/2016/027.pdf 
 
Efficiently Computing Data Independent Memory Hard Functions. Alwen, J. and Blocki, J. 
CRYPTO 2016. 

 
 
Reviewer B:  
 
On the whole I think this submission merits publication at this venue. It is relatively well 
written and makes a nice contribution to the area of ASIC resistant computation which is itself 
undoubtedly a well motivated topic of research in the field of cryptocurrencies. 
 
I particularly like the idea of using the generalized birthday bound as a basses for memory-
hard problems. From a theoretical perspective the problem has been previously studied in 
various forms which provides us with various tools (algorithms) and related lower-bounds for 
reasoning about the construction. More practically it is simple to describe, understand and 
implement and the resulting asymmetry between prover & verifier are extreme. It also seems 
to lend itself well to tuning various lower-bounds on the resources required to produce proofs. 
It is also very helpful that that an implementation is available. 
 
However I do have two concerns with the current writeup and I strongly suggest they should 
be addressed before the final version is submitted for publication. 
 
1) The writeup is quite unclear about what is being conjectured vs. what is being proven when 
it comes to security. It would benefit greatly from a paragraph summarizing what is know, 
what is shown and what remains open/is being conjectured. 
 
In particular my understanding is that in order for the construction to be a good PoW 
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according to the authors own criterion it must be that no algorithm solves the "algorithm-
bound" version of the k-XOR problem significantly better then the improved Wagner's 
algorithm and that no better optimizations exists for Wagner's algorithm then the ones listen in 
the writeup. Only then do we get the guarantee that the construction is "Optimization-free". In 
other words, only then do get the guarantee that an adversary has no advantage over the honest 
parties. In my opinion this is an absolutely crucial feature of any PoW construction. Why this 
should be true for the proposed construction should be made much clearer given it's 
importance.  
 
Indeed the closest I could find for any such justification may be the sentence "Therefore, if we 
pre-fix the positions where 2^l-XORs have zero bits, we bind the user to a particular algorithm 
flow." But this sentence makes little sense to me (which is why I think it needs to be either 
much expanded upon, or else out right removed). On a high level, my understanding of the 
authors intentions here are based on the observation that Wagner's algorithm produces a 
particular subset of possible solutions to the k-XOR problem so the authors modify the 
problem to only accept solutions from this subset. However to then make the leap that this 
means _any_ adversary must necessarily use Wagner's, or even just a "Wagner-like" algorithm 
is a very big leap. In particular I think that A) "algorithm flow" or "wagner like" or similar 
terms should be made much more clear and precise and B) this conjecture upon which security 
is based should be made very explicit and highlighted. After all it is an important starting 
point for future work wishing to confirm or refute the security of the protocol proposed in this 
work. 
 
To be clear, I am by no means asserting there to be a problem with the conjecture, or even that 
there is somehow good reason to believe it is false. Simply that if such a conjecture is needed 
for full security then it should be stated both explicitly and precisely. (Though I suspect 
making it precise may turn out to be not be that easy... e.g. is it clear that no third type of 
optimization, other than the two listed at the top of page 7, can not exist for Wagner's 
algorithm? Put differently how can one characterize the set of algorithms for which security is 
actually shown in the submission?) Any evidence why such a conjecture should hold would 
also be greatly appreciated and significantly strengthen this work. 
 
2) The introduction repeatedly confuses memory-bound and memory-hard functions. These 
are not the same and using the terms and corresponding results interchangeably should 
definitely be avoided. Memory-bound means many cache misses are needed to compute the 
function. "Memory-hard" means a lot of memory is needed to compute the function. While the 
later may (at least in some sense) imply the former the converse is not true. For example I 
strongly disagree with the discussion concerning [22]. [22] does the same (i.e. uses the same 
model, security definition and a closely related proof) as [20] and has the same intuitive goal 
and motivation as [6, 20]. Yet in the submission, [22] is described as being "memory-hard" 
while [6, 22] are said to be "memory-intensive" (as an aside: why introduce a new term here? 
why not use the existing one used in those and other works: "memory-bound"?). However 
even a brief inspection of [22] and [20] show that they are actually very similar results. Indeed 
[22] is formulated explicitly as improving on the construction of [20]. More generally to see 
the difference between memory-bound and memory-hard consider a machine with say 1MB 
cache, doing random pointer jumping in a 2MB array of incompressible bits (i.e. essentially 
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the construction of [20] and [22]). This is a memory-bound function as computing it (with any 
algorithm) results in many cache misses (as proved in [22, 20]). However it is not memory-
hard in that it doesn't require a lot of memory (only 2MB). To be clear: the goal of [22] (and 
[6, 22]) was not that an adversary requires a lot of memory. just that they require a lot of 
memory accesses. But this can already be achieved with not very much more memory than 
cache. Indeed, this is why increasing the difficulty parameter for such memory-bound function 
constructions only increases the number of pointer jumps, but not the size of the array in 
memory. 
 
 
Other small comments 
-------------------- 
- Abstract: "The proof-of-work" -> "Proofs-of-work" 
 
- Page 1: Botnets seem a bad motivation for this since they consist of the same type of 
hardware as honest users. given that botnets are used for other intensive computation (such as 
bitcoin mining) it would seem that hiding intensive resource usage from an infected hosts 
owner is not too great a problem (especially given the extreme under-usage of the hardware in 
most home PCs.)... ASIC/FPGA resistance is a far better motivation for this submission. 
 
- Page 2: "is expected" -> "we expect" Also [23] has been implemented and is available as 
part of the github project working towards a full spacemint implementation. If the submission 
wants claim that [23] is not practical it needs to explain what is wrong with the current 
implementation. 
 
- Page 2: It would be good to explain why not being amortization-free should be considered a 
problem for the Proof-of-Space protocols in [23] given that [37] uses them in precisely one of 
the main applications motivating the PoW in the submission: namely a cryptocurrency. Also I 
don't understand what is meant by "the computational penalties are guaranteed only after the 
memory reduction by a logarithmic factor". This should be made clearer and it should also be 
clarified why the authors believe their results address this problem. (If the statement refers to 
what the authors in [23] were able to prove in terms of a security statement then I feel this to 
be rather misleading criticism of [23]. After all 1) no "attack" on [37] is known to exist 
between the gap of what is proven and what one would ideally desire and 2) I am unclear on 
why the submission should have a significantly better state of affairs in terms of actual 
security guarantees. As discussed above, my understanding is that security of the submission 
is based on a strong lowerbound conjecture (not unlike [23] which also relies on a conjecture). 
Given the reliance on, a priori incomparable, conjectures criticizing exact security seems... a 
bit misleading.) 
 
- Page 3: in the numerator in the equation "M/q" -> "M_S0/q" 
 
- The authors highlight a useful property called "Progress-free Process" but then never refer to 
it again. It might be nice to add in a comment somewhere high lighting why the submission 
enjoys this property (or at least that it does). 
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- I'm slightly unclear as to why the authors believe that a bitcoin like PoW but using say 
Argon2d (being faster then scrypt to avoid the Litecoin problem) would not constitute a PoW 
according to their criterion. For example such a protocol exhibits the required asymmetry: The 
verifier only performs a single evaluation of the hash function compared to the exponentially 
many evaluations by the prover. In fact such a protocol would also be progress-free, allow for 
tuning various resource constraints and lend itself well to implementation. I doubt I will be the 
only one with such thoughts so I think it would help if the authors address them. 

 

1B. Authors’ Response 

Reviewer A: 
 
The paper proposes a proof-of-work (PoW) scheme based on a problem called the generalized 
birthday problem. The primary goal is to develop a PoW scheme for cryptocurrency with 
several properties:  
 
1. (tuneable costs) the cost of producing a PoW can be adjusted/controlled,  
 
2. (equitable costs) the amortized cost of producing a PoWs on an ASIC is not much lower 
than the cost of producing a PoW on standard computer architectures (e.g., desktops), and 
 
3. (extreme asymmetry) the cost of verifying a proof-of-work should be as inexpensive as 
possible. 
 
The problem is well-motivated. For example, Hashcash, the PoW used in Bitcoin, satisfies 
properties 1 and 3 but not 2. The (undesirable) result is that a small number of miners (with 
ASICs) control most of the hash power in the Bitcoin ecosystem. PoWs based on memory 
hard functions (e.g., SCRYPT) potentially satisfy properties 1 and 2, but the cost of verifying 
a PoW is undesirably high. 
 
The authors present a PoW candidate based on the Generalized Birthday Paradox and provide 
some arguments that it satisfies all three properties. One of the primary technical tools they 
use is an idea called `algorithm binding.' The goal is to tie the PoW solution to a particular 
execution of Wagner's algorithm for the generalized birthday paradox problem so that the 
amortized cost of computing multiple PoW solutions is equal to the cost of computing one 
PoW solution. 
 
The equihash scheme relies on several key assumptions: (hardware/memory) it is not possible 
to exceed memory bandwidth 1 TB/s on chip, (parallel sorting) any parallel sorting algorithm 
requires high memory bandwidth and (no shortcuts) Wagner's algorithm requires sorting. 
These assumptions need to be acknowledged/discused earlier in the paper. Furthermore, as 
these assumptions are crucial, the discussion around these points needs to be expanded. In 
particular, the paper only cites [33] and [40] when discussing parallel/sequential sorting. Both 
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papers are several (2012) years old so I would not be shocked if more recent GPUs/ASICs 
have better performance. 
 
Technical Comments: 
 
Proposition 1 only tells us how many solutions we get on average using Algorithm 1 with a 
specific memory size. It would be helpful to (at least briefly) comment on variance (e.g., the 
proposition statement does not rule out the possibility that we get 2million solutions w.p. 
10^{-6} and 0 solutions w.p 1-10^{-6}). Also during the first step we actually expect (N 
\choose 2)*2^{-n/(k+1)} = 2^{n/(k+1)+1} - 1 = N-1 entries for the second table. For the third 
table it will be N-2+o(1) etc... I think you will still end up with (almost) two solutions in 
expectation, but the exact formula will be slightly more complicated. 
 

• We have commented on the variance after Proposition 1. 
 
The notation in II.A (Steep time-space tradeoffs) needs to be clarified (e.g., I don't understand 
the term max_{A_R} M(A_R) as M(A_R) is never defined. Does A_R denote the standard 
implementation?). How do M_0 and M relate to each other? Does C_R(q) compare the 
performance of a fixed algorithm A_R as memory varies or are we comparing the reference 
distribution with the best known algorithms with memory M/q?  
 

• We have clarified this paragraph. 
 
Proposition 3 suggests that the amortized cost of producing a PoW solution drops dramatically 
as memory increases. Thus, an adversary with less memory will pay a steep cost. However, I 
am not convinced that this is actually a positive result for Equihash as it suggests that the only 
effective way to mine is to have the most memory (e.g.,  miners may prefer to deviate from 
algorithm 2 to produce the PoW). It seems like we also want the property that we cannot 
effectively make use of memory M > M_0, where M_0 is the memory used by the reference 
implementation. Furthermore, I don't think that the ``algorithm-binding technique" fixes this 
particular concern. 
 

• We have discussed this in a new subsection V.D. Unfortunately there is no way to 
prevent miners from slight optimizations in either time or memory from the reference 
implementation, but we can prove that these optimizations are limited. 

 
Similarly, proposition 7 seems to indicate that the scheme is broken in theoretical sense (e.g., 
on an parallel ASIC AT costs can be decreased dramatically). In particular, there is an attack 
with parallelism p that reduces the time to find an algorithm-bound PoW solution by (roughly) 
p. The (potentially) saving factor is that the required memory bandwidth also grows by a 
factor of p. Thus, this particular attack may be unrealistic in practice (assuming that no 
ASIC/memory chip can be developed that accommodating). Proposition 7 does leave open the 
possibility of other (yet unknown) practical parallel attacks. 
 

• We have added a totally new discussion on parallel attacks in Section VI.B. However, 
the practicality of them seems to be pure speculation.   
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Minor: 
 
Footnote 1: "are now integrated" 
 
The authors only cite their own paper [15] during their discussion of time-space tradeoffs of 
MHFs in the introduction. See High Parallel Complexity Graphs and Memory-Hard 
Functions. Alwen, J. and Serbinenko, V. STOC 2015. 
 
(More recent) 
 
Balloon Hashing: a Provably Memory-Hard Function with a Data-Independent Access 
Pattern. Boneh Corrigan-Gibbs, Schechter. https://eprint.iacr.org/2016/027.pdf 
 
Efficiently Computing Data Independent Memory Hard Functions. Alwen, J. and Blocki, J. 
CRYPTO 2016. 
 
  

• added  
 
 

Reviewer B: 
 

On the whole I think this submission merits publication at this venue. It is relatively well 
written and makes a nice contribution to the area of ASIC resistant computation which is itself 
undoubtedly a well motivated topic of research in the field of cryptocurrencies. 
 
I particularly like the idea of using the generalized birthday bound as a basses for memory-
hard problems. From a theoretical perspective the problem has been previously studied in 
various forms which provides us with various tools (algorithms) and related lower-bounds for 
reasoning about the construction. More practically it is simple to describe, understand and 
implement and the resulting asymmetry between prover & verifier are extreme. It also seems 
to lend itself well to tuning various lower-bounds on the resources required to produce proofs. 
It is also very helpful that that an implementation is available. 
 
However I do have two concerns with the current writeup and I strongly suggest they should 
be addressed before the final version is submitted for publication. 
 
1) The writeup is quite unclear about what is being conjectured vs. what is being proven when 
it comes to security. It would benefit greatly from a paragraph summarizing what is know, 
what is shown and what remains open/is being conjectured. 
In particular my understanding is is that in order for the construction to be a good PoW 
according to the authors own criterion it must be that no algorithm solves the "algorithm-
bound" version of the k-XOR problem significantly better then the improved Wagner's 
algorithm and that no better optimizations exists for Wagner's algorithm then the ones listen in 
the writeup. Only then do we get the guarantee that the construction is "Optimization-free". In 
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other words, only then do get the guarantee that an adversary has no advantage over the honest 
parties. In my opinion this is an absolutely crucial feature of any PoW construction. Why this 
should be true for the proposed construction should be made much clearer given it's 
importance. 
Indeed the closest I could find for any such justification may be the sentence "Therefore, if we 
pre-fix the positions where 2^l-XORs have zero bits, we bind the user to a particular algorithm 
flow." But this sentence makes little sense to me (which is why I think it needs to be either 
much expanded upon, or else out right removed). On a high level, my understanding of the 
authors intentions here are based on the observation that Wagner's algorithm produces a 
particular subset of possible solutions to the k-XOR problem so the authors modify the 
problem to only accept solutions from this subset. However to then make the leap that this 
means any adversary must necessarily use Wagner's, or even just a "Wagner-like" algorithm 
is a very big leap. In particular I think that A) "algorithm flow" or "wagner like" or similar 
terms should be made much more clear and precise and B) this conjecture upon which security 
is based should be made very explicit and highlighted. After all it is an important starting 
point for future work wishing to confirm or refute the security of the protocol proposed in this 
work. 

 
To be clear, I am by no means asserting there to be a problem with the conjecture, or even that 
there is somehow good reason to believe it is false. Simply that if such a conjecture is needed 
for full security then it should be stated both explicitly and precisely. (Though I suspect 
making it precise may turn out to be not be that easy... e.g. is it clear that no third type of 
optimization, other than the two listed at the top of page7, can not exist for Wagner's 
algorithm? Put differently how can one characterize the set of algorithms for which security is 
actually shown in the submission?) Any evidence why such a conjecture should hold would 
also be greatly appreciated and significantly strengthen this work. 
 

• We have discussed this in a new subsection V.D  
 
2) The introduction repeatedly confuses memory-bound and memory-hard functions. These 
are not the same and using the terms and corresponding results interchangeably should 
definitely be avoided. Memory-bound means many cache misses are needed to compute the 
function. "Memory-hard" means a lot of memory is needed to compute the function. While the 
later may (at least in some sense) imply the former the converse is not true. For example I 
strongly disagree with the discussion concerning [22]. [22] does the same (i.e. uses the same 
model, security definition and a closely related proof) as [20] and has the same intuitive goal 
and motivation as [6,20]. Yet in the submission, [22] is described as being "memory-hard" 
while [6, 22] are said to be "memory-intensive" (as an aside: why introduce a new term here? 
why not use the existing one used in those and other works: "memory-bound"?). However 
even a brief inspection of [22] and [20] show that they are actually _very_ similar results. 
Indeed [22] is formulated explicitly as improving on the construction of [20]. More generally 
to see the difference between memory-bound and memory-hard consider a machine with say 
1MB cache, doing random pointer jumping in a 2MB array of incompressible bits (i.e. 
essentially the construction of [20] and [22]). This is a memory-bound function as computing 
it (with any algorithm) results in many cache misses (as proved in [22, 20]). However it is not 
memory-hard in that it doesn't require a lot of memory (only 2MB). To be clear: the goal of 
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[22] (and [6, 22]) was not that an adversary requires a lot of memory. just that they require a 
lot of memory accesses. But this can already be achieved with not very much more memory 
than cache. Indeed, this is why increasing the difficulty parameter for such memory-bound 
function constructions only increases the number of pointer jumps, but not the size of the 
array in memory. 
 

• We have clarified the introduction on these points. 
 
 
Other small comments 
-------------------- 
- Abstract: "The proof-of-work" -> "Proofs-of-work" 
 
- Page 1: Botnets seem a bad motivation for this since they consist of the same type of 
hardware as honest users. given that botnets are used for other intensive computation (such as 
bitcoin mining) it would seem that hiding intensive resource usage from an infected hosts 
owner is not too great a problem (especially given the extreme under-usage of the hardware in 
most home PCs.)... ASIC/FPGA resistance is a far better motivation for this submission. 
 

• added  
 
- Page 2: "is expected" -> "we expect" Also [23] has been implemented and is available as 
part of the github project working towards a full spacemint implementation. If the submission 
wants claim that [23] is not practical it needs to explain what is wrong with the current 
implementation. 
 

• added  
 
- Page 2: It would be good to explain why not being amortization-free should be considered a 
problem for the Proof-of-Space protocols in [23] given that [37] uses them in precisely one of 
the main applications motivating the PoW in the submission: namely a cryptocurrency. Also I 
don't understand what is meant by "the computational penalties are guaranteed only after the 
memory reduction by a logarithmic factor". This should be made clearer and it should also be 
clarified why the authors believe their results address this problem. (If the statement refers to 
what the authors in [23] were able to prove in terms of a security statement then I feel this to 
be rather misleading criticism of [23]. After all 1) no "attack" on [37] is known to exist 
between the gap of what is proven and what one would ideally desire and 2) I am unclear on 
why the submission should have a significantly better state of affairs in terms of actual 
security guarantees. As discussed above, my understanding is that security of the submission 
is based on a strong lowerbound conjecture (not unlike [23] which also relies on a conjecture). 
Given the reliance on, a priori incomparable, conjectures criticising exact security seems... a 
bit misleading.) 
 

• added  
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xi 

- Page 3: in the numerator in the equation "M/q" -> "M_S0/q" 
 
- The authors highlight a useful property called "Progress-free Process" but then never refer to 
it again. It might be nice to add in a comment somewhere high lighting why the submission 
enjoys this property (or at least that it does). 
 

• The progress-free property of Equihash highly depends on the parameters, and we 
believe that for those taking less than a second it can be considered progress-free, and 
for others it is discussible. 

 
- I'm slightly unclear as to why the authors believe that a bitcoin like PoW but using say 
Argon2d (being faster then scrypt to avoid the Litecoin problem) would not constitute a PoW 
according to their criterion. For example such a protocol exhibits the required asymmetry: The 
verifier only performs a single evaluation of the hash function compared to the exponentially 
many evaluations by the prover. In fact such a protocol would also be progress-free, allow for 
tuning various resource constraints and lend itself well to implementation. I doubt I will be the 
only one with such thoughts so I think it would help if the authors address them. 
 

• added 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


