
 ISSN 2379-5980 (online)
 associated article DOI

10.5915/LEDGER.2016.34

	
	

Ring Confidential Transactions: Open
Review

Authors: Shen Noether,† Adam Mackenzie, the Monero Research Lab*

Reviewers: Reviewer A, Reviewer C

Abstract. The final version of the paper “Ring Confidential Transactions” can be found in
Ledger Vol. 1 (2016) 1-18, DOI 10.5915/LEDGER.2016.34. There were two reviewers
who responded, neither of whom have requested to waive their anonymity at present, and
are thus listed as A and C. After initial review (1), the authors submitted a revised
submission. This was reviewed a second time by reviewer C (2A). The assigned Ledger
editor then recapitulated key points of the reviews, which the authors responded to point-
by-point (2B). After this the assigned Ledger editor determined that the authors had
adequately addressed the reviewer concerns and asked the authors for minor revisions
which were carried out by the authors, completing the peer-review process. Authors’
responses in 2B are in bullet form.

1. Review, Initial Round

Reviewer A:

A very nice paper, with interesting new ideas and sound security proofs.

Cryptography is ok and the extension to greater anonimity is indeed helpful.

I suggest acceptance, especially if Section 5 is removed (which doesn't fit so well with the
remainder of the paper) and the "I" is substituted with "we".

Reviewer C:

This paper presents a method to hide transaction amounts in Monero i.e. allow for
“confidential transactions”. In order to achieve such a property the authors propose a new ring
signature scheme that is linkable which is essential in order to achieve double-spending
security. At the same time, the natural properties of ring signatures provide the necessary
anonymity required. The new signature scheme is “multilayered” which essentially means that
it provides two layers of anonymity: one that hides who is the user who signed the signature

																																																																																																															
† S. Noether (shen.noether@gmx.com) is a cryptography researcher at the Monero Research Lab

*1KTexdemPdxSBcG55heUuTjDRYqbC5ZL8H

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

ii

and one that hides the payment denomination used. The proposed scheme called MLSAG is
very close to an older scheme by LWW’04 but it allows the ring to consist of a vector of
vectors of keys. Although I think that MLSAG is useful (although not particularly novel - it is
a pretty straightforward modification of LWW’04) and it does enhance the anonymity of
Monero, I think that the current shape of the submitted manuscript needs major changes. I
believe that the changes needed are both in presentation level (explaining what is the goal of
the paper, have clear contributions and comparisons etc) as well as in definitional/formality
level.
That said, my suggestion is to revise and resubmit the paper for review.
Below I give detailed comments and suggestions.

Specific comments
The literature on mixing services should be updated since not all mixing services require a
trusted party: in schemes like XIM for example the third party might be malicious so the
anonymity of the users is not affected in case of a compromise. Thus, maybe a better
argument when comparing with such schemes would be in terms of efficiency (time it takes to
complete a transaction).

It would be useful to add a short explanation of how Monero works and especially how it
achieves to implement hidden amounts in the transactions. This would set the ground for the
reader to better understand the difference between original Monero and the modification
suggested in the current paper (thus would be nice to be included in the introduction).

Page 6, end of section 1.2. Is there a reference for the protocol presented by C. Frenkencht?

I feel that by reading the current draft one might be confused between ring and group
signatures. Monero actually needs a type of linkable *ring* signatures (since anonymity is
important). In the LWW04 paper this is also referred as a “linkable spontaneously anonymous
group (LSAG)signature”. I think that some clarification here would be helpful.

Section 2.1 title is misleading. What the authors claim to described here is a modification of
FS07 (traceable ring signature) given by Adam Back in order to reduce storage cost (using a
trick used in LWW04 that allows any 3 party to reconstruct on the fly parts of the signature
instead of receiving them as part of the signature). What is not clear here is what’s the goal of
this modification: if the goal is to get a linkable ring signature then LWW04 is already a
linkable ring signature. Actually I think that the scheme in Bac15 is essentially the same as
LWW04 - what is the difference, if any?

Moreover, in FS07 it is observed that LWW04 is vulnerable against an attack by a dishonest
signer that makes a honest signer accused of “double-spending”. A note of why this is not
relevant here would be useful.
Also a definition (even informal) of a linkable ring signature (i.e. what algorithms/protocols
does it consist of and what are the security properties) would be helpful.
Page 8, In keygen algorithm: define index j - is it in {1,..,n}? Add reference for ed25519 (and
maybe add a sentence explaining what it is). State size of keys. Hash function returns a point
in where? Since the description is in regards a signature scheme maybe call x the “signer’s

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

iii

secret/signing key”? Denote I as the “key image” since this notation is used later. Also, is
I public? It would be helpful to state public and secret keys of users at the end.
Sentence “let me be a given message” is irrelevant to Keygen - it can be moved to Sign.
Page 8-9, Sign algorithm. What’s the message space? (is it messages of arbitrary size as in
LSAG?) Are s_j values really randomly selected as stated in the beginning? My understanding
is that every s_i is defined by \alpha, c_j and x.
End of page 9: should also be given message m.
Page 10: Not sure why Link needs to reject a signature (this seems to be needed later but
seems irrelevant in the description of a signature scheme). Link algorithm should just decide if
two signatures given as input were generated by the same user or not.

End of Section 2.1. It would be useful to highlight the differences between the described
signature and LWW04. This would make it more clear to see whether the proofs of LWW04
still hold.

Section 2.2. Some motivation on why vectors of keys are needed would be helpful. Also, state
again then format of secret/public keys. Is it same as in 2.1? Finally, is the same hash function
H used for both the computation of R’s and c’s?
Section 2.3 Defining MLSAG (security model). This section will have to be remodeled and
should be moved before the construction. As mentioned above the standard way to describe a
new scheme is: (1) define scheme and security model, (2) construct and (3) prove construction
secure according to security model of (1). This section should start by defining the
algorithms/protocols of an MLSAG (i.e. as it is done in LWW04 beginning of Section 3).

Section 2.3 I found the unforgeability definition kind of odd. For instance how can A
know/select the public keys without knowing the secret keys? In fact think that the
unforgeability definition is misleading even in LWW04. Authors should look at BKM’05
(https://eprint.iacr.org/2005/304.pdf)
and AOS’02 (http://link.springer.com/chapter/10.1007%2F3-540-36178-2_26)
for a formal version of unforgeability.
Definitions of Linkability and Signer Ambiguity could be further formalized as in LWW04.

In proof of unforgeability in Appendix A.1 notation is inconsistent to the construction: i.e.
hash functions are H_1 and H_2 when just H is used in construction (which as I mention
above I think is wrong). Calligraphic L never defined. Also should be stated (in definition of
Thm 11) that proof is given in the random oracle model. Finally, in the proof it seems that the
PPT adversary M is given as input a list L of public keys (by a challenger) and tries to find the
discrete log of one of them. Thus, the list L should be forward as input to A. However, this
does not much the unforgeability definition given in main body (please also see note above - I
believe this definition needs to be fixed).

Lemma 10. What is the cited Theorem out of which proof easily follows? I actually do not
think that proof of Lemma 10 is trivial. However, it is indeed given in LWW04 - so a citation
to them is probably enough.

Page 14: what does SUM of Inputs/Outputs notation stands for? Is it the total sum of bitcoin
value?

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

iv

Page 17 Definition 6: this is a construction not a definition.

Section 4: I was expecting a more clear description of how n and m (from the key vector of
the new signature scheme) are mapped to monero. Is n the number of users in the system
and m the number of possible denominations?

Regarding Section 5:
First I do not understand why this section is called “Range Proofs”. I essentially see a new
signature being proposed here called aggregate shnorr non-linkable ring signature. First it
would be very useful to define what an aggregate non-linkable ring signature is - such a
primitive does not exist in the literature so relevant definitions and security model does not
exist. After the construction a proof of unforgeability is given (Also in proof of Thm 9,
analysis of prob. of success is missing.). However, this is certainly not enough. Unlinkability
should also be proven and potentially other properties depending how one defines “aggregate
non-linkable ring signatures”.

Moreover, regarding Section 5 I do not understand the advantages or the trade offs by using
this method instead of the protocol of Section 4. I overall think that that some sort of
comparison of original CT and the 2 new methods presented in the paper is needed in order to
understand the contributions of this work.

Typos/Minors
* Page 5, 2nd line of Sec 1.2. Typo in CryptoNote name
* Page 6, 2nd line of Sec 1.3 “Ring CT” notation have been used before. Maybe denote when
first refer to “Ring Confidential Transactions” above.
* Page 6, 5th line of Sec 1.3, delete “in”
* Page 8, in 3rd line of Keygen, should be “signer’s”. Also, next sentence there is a period
missing after footnote.
* Pages 8-10, be consistent on capitalizing (or not) names of algorithms/protocols
* Page 13, 2nd to last line, should be “to the Confidential..”
* Inconsistency between “proof of work” and “proof-of-work” (in various places) same with
“multisignature” and “multi-signature”.
* I found the use of first-person singular throughout the paper a bit odd (especially given that
there are 2 authors).

2A. Review, Second Round

Sec 1.1, last paragraph: 2nd line needs editing - doesn’t make much sense towards the end.

Nice that XIM reference is added. However, I think this section could be further updated

to better capture recent work. Figure 1 from BOLL14 or Table 1
from https://eprint.iacr.org/2016/575.pdf would help.

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

v

Section 1.4, maybe add a note that if trusted setup compromised then anonymity is still
guaranteed (although coins can be now forged).

Section 1.5, minor editorial comment: say in the first couple of lines what’s the advantage

of new proposal over Monero (i.e. what does the modification offer?)

Page 5, 2nd to last par, line 7 needs editing

What is a “back signature”, only mentioned in Title of Sec. 2.1.1

Sec 2.1 could maybe moved to a prelims section and keep Section 2 just defining the new

primitive?

Sec 2.2. In SIGN algorithm definition - what is G? Keep definitions clear of construction

specifics. Do you need the public key vector that corresponds to the secret key vector x given
as input? I am confused with the input of SIGN

In VER algorithm, the key matrix sigma should be public keys, right?

LINK algorithm is undefined. What does it mean for two signatures to be linked? Under

the same sk, under the same public keys vector - what?

Actually for the whole definitional part I am not sure you need to define the keys as

vectors - you could just define them as single values and thus make it less confusing. The
vectors are only needed as part of the construction as far as I can tell. An example of where
they make things very confusing is the unforgeability description - is it problem if the
adversary knows only a subset of a sk vector for the corresponding pk?

Unforgeability is ill-defined. Given that the adversary is given the signing oracle he can

obviously output valid signatures. The when does he win? There multiple scenarios here given
the type of unforgeability you aim for. I.e. in existential unforgeability Adversary only wins if
outputs (m, sigma) for m *not* queried to SO. Then, there is also the notion of strong
unforgeability, where A is succesful is ouputs another sigma for a message m that he sent as
query to oracle SO.

Also in unforgeability does oracle SO outputs valid signatures for any of the public keys in

list Sigma?

Def 3 - Q should be defined here.

Def 4 - does the set D_t consist of vectors (see also above for vectors/non-vectors on the

definition)?

Overall regarding definitions the only way to be very specific with such properties is to

write them more formal as security games - it would be much easier to understand and
properly prove them.

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

vi

Page 10 please edit text in 1st line right below bullets.

You should state in introduction that the new ring signature scheme is claimed secure in

the random oracle model.

Please include a better citation for range proofs (they did not originate at Max15 -

although used there)

Maybe consider a different title for section 3 - when you say "background..." it sounds like

you just describe pre-existing work but you do suggest new stuff here

Finally, as a general note. I do appreciate the authors effort to provide definitions and

proofs for the new type of ring signature they introduce. However, no definitions and proofs
are given for the overall scheme (Ring CT as a currency). This is a long and challenging
process and even for Zcash is still under development (in FC'16 the authors of Zerocash did a
first attempt for a full simulation based definition and proof).

The absence of such a proof makes the statements in sections 1.4 and 1.5 sound very
strong. I am not suggesting that this work is needed as part of this paper but I think it is
important to highlight that the overall security should still be studied as a future work.

2B. Authors’ Responses

Dear Shen and Adam,

Thanks for sending a revised version, you've improved the paper substantially and

addressed most of the reviewers' suggestions.

After looking at the diff between the original and recent revisions, there are still several

suggestions that I believe were left unaddressed.

For each of these, if you think you did addressed them and I just missed it, or you've

deliberately chosen not to address these, could you explain why?

- Include a citation to https://dl.acm.org/citation.cfm?id=2665955, at least, to

improve the background on mixing alternatives 	
	

• I cited this in section 1.2 (BOLL14), based on previous reviewers suggestions.

- Could you provide some clarification on the terminology used, especially between “ad
hoc group”, “spontaneous anonymous group”, and “ring” signatures? At one point you use the
phrase "ad hoc ring signature", which might be redundant if "ring" means "ad hoc group".
 	

• This was clarified on the footnote on page 6, which is at the start of section 2,
where I talk about the . If this is not an obvious place, let me know and I can move
it somewhere else.

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

vii

- Section 2.1 title is misleading. Given that LWW04 is already a linkable ring signature,

then what exactly is the difference between Bac15 and LWW04? You have referred to the
differences compared to LWW04 as “insignificant”, and “similar, but more efficient”, but
could you identify the exact difference more clearly? This will make it more straightforward
for reviewers to confirm that the proof still holds. 	
	

• This was clarified at page 8, after the link phase: “The very slight difference
between the above signature of [Bac15] and that of [LWW04] is in the key image.
In the scheme described in [LWW04], I is defined by the equation I = x j H p (P 1
,P 2 ,...,P n). In other words, that scheme proves that a signer can only sign once
with respect to a given set of keys (although they could sign with the same key in
many different sets of keys, each having different hashes). In the above scheme of
[Bac15], the key image is I = x j H p (P j) which enforces that a signer can only
sign with a key once, without their sig- nature being rejected in the LINK phase of
the algorithm. This modification, which is similar, but more efficient to the one
made in [FS07, Section 3], is more suited for digital currency use, since it prevents
double-spending of the value stored in a given key. Note that proofs of
unforgeability, anonymity, and linkability hold for the above protocol which are
only insignificant modi- fications to the proofs given in [LWW04]. We will give a
more general version of these proofs for the MLSAG’”
Note-> In the version I am sending you now, I have made this a subsubsection
(2.1.1) called “Back signatures vs LWW signatures.”

- It seems like the generalization that makes this article a contribution vs LWW04 and

Bac15 is that n keys are generalized to n key-vectors. What is the significance of a key-
vector? You've defined it, and it shows up briefly in the introduction (as "To deal with this
issue.... [we allow] a user to sign with a vector of keys, rather than a single key"), but I don't
think this is clear enough.

• This version I am sending clarifies: To deal with this issue, a generalization of

the signatures of [LWW04] is created, which allows a user to sign with a vector
of keys, rather than a single key. The point of using a key-vector is so that a
user can prove they have simultaneously have knowledge of both the secret
key of the input address and the secret key of the input commitment. (Contrast
this with signing two distinct ring signatures: one for the commitment, and one for
the input key. This would prove that you know keys for an amount and an
address, but not necessarily link the two). This generalization is...

I think the root cause of this confusion is due to the fact that in Confidential Transactions,
"ring signatures" are sort of repurposed/overloaded to actually serve as a zero-knowledge
range proof. In conventional use, each public key in a ring is an ordinary public key, typically
each generated by a different user or at a different time --- the public keys are entirely
independent and unrelated. But here, each "public key" in a row is actually a sort of ephemeral

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

viii

commitment to a possible value, and in fact they're all related and derived from by the same
user, and by "signing" one of them signer proves that the committed value is in a range.

My suggestion is to clear this up with a more explicit explanation in Section 3.3 where you
describe how ring signatures are used as range proofs in CT. And then refer to this section and
give a shorter description when mentioning "key-vectors" and why the generalization is
needed. 	
	

• A good point, since this is possibly confusing. I have included in beginning of 3.3:
“Note that this range proof construction also uses a type of ring-signature, which
does not need linkability. This ring signature is used for a completely different
purpose than the MLSAG’s (namely the range proof ring signatures are used to
prove each bit of the output amount is in the set {0,1} without giving away which
number it actually is) and have no interaction with the MLSAG part of the Ring
CT Protocol.”

- In FS07 it is observed that LWW04 is vulnerable against an attack by a dishonest signer
that makes an honest signer accused of “double-spending”. A note of why this is not relevant
here would be useful. 	
	

• This is covered in 2.1.1 where I discuss the difference between LWW and Back
signatures (the Back signature applies the fix of the FS07 to LWW).

- Typo: MSLAG at the beginning of section 2.2 should be MLSAG

• Fixed

For messages, you do now define the message space (basically, sha256 hashes of arbitrary
messages), but that’s in a weird place, in the Linkability property. Why not move it up to
where message m first appears?

• I’ve updated with a sentence to this effect on page 7, where message first appears.

Also you switched between two different fonts, like ordinary math m, and \cal{m}.

• (I’ve fixed the two different fonts to be using mathfrak only)

Also in Definition 3, you use the prime versions (e.g., m‘, and \sigma’) without
introducing them.

• I’ve update this by introducing them.

Also the equation in this definition is repeated twice

• Intentional, it’s “if it’s linked then you can tell, if it’s not linked, then you can tell”

LEDGER VOL 1 (2016) SUPPLEMENTAL TO 1−18
	

l e d g e r j o u r n a l . o r g 	

ISSN 2379-5980 (online)
associated article DOI

10.5915/LEDGER.2016.34	
	
	

ix

- For notation on the hash functions, it looks like in the scheme you now use lowercase h
to denote a sha2-like hash that returns a string, and H_p to denote a hash that randomly
samples group elements. In the proof, you still use H1 and H2.

• You’re right, this is annoying – I’ve updated this everywhere so that H_s is hash to
scalar, and H_p is hash to point

In section 4.4 you use H(), where I think you meant H_p.

• Fixed.

- You improved the definition of Unforgeability. Instead of A choosing public keys, it
chooses from among a set of public keys in some public set, e.g. on the blockchain. This is
still imprecise. Can A include its own bogus public keys to this set? Look at Section 3.2
https://eprint.iacr.org/2005/304.pdf for a discussion of subtleties in this definition.

• “A” is allowed to include bogus public keys in the set as long as they don’t know

an entire private key-vector (they can even know all but one of the secret keys in a
key-vector) - this is the last sentence in my definition- the logic here is that, since
they must solve, at the end of the signature s = a – cx, then as “c” is a hash, which
they cannot control, if they don’t know x they can’t find s. Note that LWW have a
similar definition to the one I am making “List of public keys chosen by A”, and
their paper is cited in your link ([20], with respect to the final definition in 3.2).
Specifically, the wording “don’t know an entire secret key-vector” corresponds to
R\subseteq S\C, where C is the set of corrupted users, in definition 7, section 3.2. –
I can probably change this wording if desired.

	 	 	 	 	 	 	 	 	 	 	 	
	

	

https://creativecommons.org/licenses/by/4.0/

