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Barter Machine: An Autonomous,
Distributed Barter Exchange
on the Ethereum Blockchain
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Abstract. Direct bartering allows for the trading of assets with or without the use of money.
In this paper, we introduce a smart contract written in the Solidity language for the Ethereum
blockchain that implements a distributed and autonomous direct barter exchange operated
by crowds. Since ERC20 smart contract tokens are widely used for initial coin offerings
(ICOs), our implementation provides autonomous bartering services for ERC20 tokens. The
non-fungible ERC721 token, as well as Ethereum Name Service (ENS) name bartering,
are also supported. Because finding a feasible bartering solution for bids involving mul-
tiple tokens is NP-hard in general, our exchange only provides escrow and swapping ser-
vices. It assumes feasible solutions are submitted by bartering problem solvers from the
crowd who run a solver locally on their machines. Bartering problem solvers are incen-
tivized to submit solutions to the autonomous exchange by awarding them with excess to-
kens that are left over after granting the bidders the tokens they requested in their bids. Our
system, called BarterMachine, can perhaps be used to facilitate a global barter economy.
The BarterMachine prototype is available for testing on the Ethereum Ropsten network at
https://bartermachine.github.io/bartermachine/ropsten/.

1. Introduction

In elementary schools, we were told by our teachers that pre-historic people would gather in an
open square, and put down excess food or animals they had hunted and which they did not need,
in order to form a collection of excess items. They would then pick from the excess collection
the items which they needed. This simplistic exchange mechanism worked when the numbers
of men and the items traded were small. As the worldwide population—and the number of
items produced and consumed—increased to millions and then billions, this scheme no longer
worked. The English economist William Stanley Jevons pointed to this problem using the now
quite popular phrase “the difficulty of finding a double coincidence of wants” and made a strong
argument for money as a solution to this problem. Specifically, in his book, Jevons stated, “The
first difficulty in barter is to find two persons whose disposable possessions mutually suit each
other’s wants. There may be many people wanting, and many possessing those things wanted;

∗19HiB4AvutzjWU6VbkDNTqWTK2x6hxMrM3
†Can Özturan (ozturaca@boun.edu.tr) is a faculty member in the Department of Computer Engineering at Bogazici University,

Istanbul, Turkey.

https://bartermachine.github.io/bartermachine/ropsten/


LEDGER VOL 5 (2020) 20-35

but to allow of an act of barter there must be a double coincidence, which will rarely happen.”1

In the modern world, however, the difficulties mentioned by Jevons are easier to handle:
(1) We now have blockchain infrastructures that allow us to keep records of ownership of

items and transfer them in a trustless manner across the globe. A blockchain can be
viewed as an open square where the pre-historic person put forward all the items they
owned and wanted to trade.

(2) There are fast optimization software packages (minimum cost flow solvers and integer
programming solvers) that can give solutions to double (or multiple) coincidence of wants
problems involving large number of people and items.2–4 In general, finding multiple
coincidences of wants of multiple items translates to finding hypercycles in directed
hypergraphs and has been shown to be NP-complete.5, 6

(3) The worldwide population and the number of items being traded are in the billions range.
Hence, the likelihood of finding multiple coincidences of wants in smaller windows of
time can be made higher by using AI-powered search engines.

We propose an autonomous system named BarterMachine, where almost any item—single or
in combination with others, or in multiple quantities—can be directly bartered by representing
them as tokens. Here are some examples of items that can potentially be bartered on the token
barter exchange: houses, tickets (airline, bus, ship, concert tickets), company shares, services
(worker hours), vehicles (new and used cars), electronic goods such as mobile phones, computers
and tablets. Cross-country transfer of money by banks can also be implemented as a bartering
process by treating, for example, euros in a bank branch in one country as tokens to be bartered
with tokens representing euros in another bank branch in another country.

The Solidity language enables us to program smart contracts that implement autonomous
systems running under the control of no one on the Ethereum blockchain.7 Our token barter
exchange is implemented as a Solidity contract and operated by crowds that are motivated to use
it in two major ways:

(1) Traders can derive a greater utility by being able to trade one arbitrary set of tokens for
another set of tokens directly. Currently, most of the exchanges provide token-pair trading.
Bartering enables users to define their own trading patterns.

(2) In a bartering solution, providers can find a feasible solution to multiple coincidences of
wants (requests) and submit it to the system. When the wants of the traders in the feasible
solution are satisfied, and there are leftover tokens remaining, the leftover tokens can be
transferred to the solution provider as an incentive.

In the rest of the paper, we first present an overview of related work in Section 2. The proposed
autonomous token barter exchange model is covered in Section 3. Details of the implemented
smart contract are given in Section 4. A web user interface based on MetaMask has also been
developed to in order to make the BarterMachine prototype accessible to ordinary users.8 It is
presented in Section 5. Results of tests to determine (i) Ethereum gas consumption of critical
functions in the smart contract and (ii) execution times of a Gurobi-based bartering problem
solution finder are reported in Section 6.4 Finally, the paper is concluded with a discussion and
future work in Section 7.
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2. Related Work

Bartering problems have been addressed in the last decade extensively in previous scholarship by
the present author and others.6, 9–13 In these, the solution techniques focused on maximization
of profits or the number of bids satisfied. The techniques were used by central authorities,
polynomial minimum cost flow algorithms were used for restricted versions of bartering problems,
and integer programming solvers were utilized to solve the more general NP-hard versions of the
problems.

In this work, we focus on providing bartering services in a distributed setting with no
central authority. In particular, we provide a blockchain-based autonomous barter exchange
implementation that is operated by crowds. The bartering problem in a distributed setting is
similar in spirit to Dijkstra’s Banker’s Problem.14 Assuming crowds have access to bartering
solver packages, we address the problem of how to implement an exchange service which
provides escrow and multiple token-swapping services when feasible solutions are submitted.
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Fig. 1. Decentralized autonomous barter model

3. Token Barter Exchange Model

Our direct token barter exchange model is illustrated in Figure 1. Our autonomous token barter
exchange is implemented as the BarterMachine TokenBarter contract. This contract accepts
orders (bids) that are expressed as a set of tokens and their quantities to be traded for a set of
tokens and their quantities. An example order is shown below:

A(3) + B(1) + C(2) => D(2) + E(3)
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Here, a user that owns A, B, and C tokens places an order that indicates willingness to trade the
set of 3 A, 1 B, and 2 C tokens on the left-hand side, for the 2 D and 3 E tokens on the right-hand
side. A full bartering problem example is given in Figure 2. Here, we show the quantities of
tokens owned and the orders placed by users. The tokens on the left-hand side of an order (i.e.
tokens to be given away) are shown as positive numbers. The ones on the right-hand side (i.e.
requested tokens) are shown as negative numbers. A feasible solution is a subset of orders that
satisfies the requested (demanded) collection of tokens indicated by the right-hand side by the
collection of the left-hand side tokens. If the token quantities in the vector corresponding to
feasible solution orders are summed component-wise to get a vector (called excess), then each
component in the excess vector will be a non-negative quantity. Formal formulation of constraints
for feasible solution are given in “Resource Bartering in Data Grids” (Özturan, 2004).6 After the
tokens that appear on the right-hand side are given to the demanding users, there may be leftovers
(i.e. positive quantities of tokens in the excess vector). These excess tokens can be given to the
person who submits the feasible solution. In this way, we can form an incentive mechanism for
solution finders who need to run time-consuming solution finding algorithms on their computers.

Storage and computation costs are expensive and restricted on the Ethereum blockchain. As
a result, in order to avoid (i) exceeding the gas limit which leads to premature contract function
terminations and (ii) large transaction costs which translate to heavy bills to the user, we make
careful design decisions on what type of orders are provided and what is enforced as far as token
balances are concerned on the contract. In our BarterMachine implementation, we assume the
orders are good until cancelled by the user. We check sufficiency of token balances when new
orders are placed. On the other hand, we do not enforce reservation of token balances for each
order but rather provide the user with an option for voluntarily supplying a deadline until which
he will not withdraw a certain amount of his tokens. There are actually valid reasons for not
enforcing reservation of balances when orders are placed. For example, suppose a user places
two bids: one for buying token A (e.g. representing a car, A) for 10 ether and one for buying
token B (e.g. representing a car B) for 12 ether. Suppose the user has a balance of 12 ether and
wants buy one of the cars but not both. Hence, our implementation allows the first solution that
includes one of these bids that is submitted to withdraw the 10 or 12 ether. But later, if another
solution that includes the other bid is submitted, it will not be accepted since there will not be
enough balance. Hence, this mechanism allows us to realize exclusive OR (i.e., capacitated) type
bids.

Note that the ability to cancel an order anytime may pose some concern to the solution finders.
What if a solution finder spends some time for finding a solution that includes an order and
yet the order is cancelled before the solution is submitted. Voluntary “no balance withdrawal”
commitment by a user until some deadline can convince a solution finder to include this user’s
order in his solution. Hence, to prevent abuse of order cancellation, there are two mechanisms
in place: (i) solution finders may skip processing of orders of users while finding solutions if
they see that the user does not commit to no balance withdrawal and (ii) when one submits and
cancels order by calling contract functions, transaction costs are charged to the user, i.e. there is
some cost to the user. We also note that the no withdrawal commitment means just no withdrawal
by the user himself: if an order of the user appears in a submitted solution, the token balance of a
token can of course be reduced/increased, even if no token is withdrawn/deposited by the user.

All the information in the BarterMachine contract is public. User balances as well as orders

23
SSN 2379-5980 (online)

DOI 10.5195/LEDGER.2020.148



LEDGER VOL 5 (2020) 20-35

Quantities Orders(bids) A soln.
owned by users u1 u2 u1 u3 u3 u4 b1,b3,b4

Token u1 u2 u3 u4 b1 b2 b3 b4 b5 b6 (excess)

A 5 3 3 -2 2 1
B 5 3 1 1 -2 2 0
C 5 3 2 2 -3 2
D 8 -2 -1 -1 4 1 -1 1
E 8 -3 -1 4 -1 0

(a)

(b)

Fig. 2. A token bartering example: tokens, user balances, bids and solution (a) and the corre-
sponding bid graph (b)
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can be queried using the contract functions. Solution finders need this collective information
because they need to form a global optimization problem and solve it, for example, by using
an integer programming package. Solution finders can check whether sufficient quantities of
tokens are present in user balances before selecting an order for inclusion in the feasible solution.
Such an approach, in effect, shifts the costly balance sufficiency check computation on the smart
contract to the computer of the solution finder. In this way, gas costs of the functions on the smart
contract will be lower.

Currently, when an ERC20, ERC721 token(s), or ENS name are deposited for the first time to
a BarterMachine contract by any user, a token structure is created internally in the contract and
an integer token number is assigned to it. Within our BarterMachine contract, the integer token
number is the ID of the token. No token symbols are stored in our BarterMachine contract, since
ERC20 token contracts can be set to have the same symbol name by different token contract
deployers. Optionally, a separate token symbol server contract can also be implemented in the
future that acts as an authority to register token symbol names as shown in Figure 1.

Finally, we note that our BarterMachine prototype currently supports an open solution
submission policy meaning any user can support a solution. Whoever’s solution transaction is
first entered into a block, those solution bids will be satisfied; hence, solution finders run the risk
of wasting their computational efforts due to being late. This is the disadvantage you get in return
for offering the advantage of being open to anyone. We have a similar situation in the Bitcoin
and Ethereum mining processes, where miners solve a hash puzzle. The networks are open and
anyone can mine (i.e. try to solve the hash puzzle), but whoever solves the hash puzzle first gets
the mining reward. In order to save on computational efforts, other policies can be considered in
the future. For example, we can have ERC721 tokens representing time intervals; then, only the
person who buys the token representing an interval can submit solutions in that time interval.

4. Smart Contract Implementation

The BarterMachine contract provides several functions that broadly serve one of these purposes:
(1) Deposit: Ether, ERC20 and ERC721 tokens, and ENS names can be deposited as well as

consumable dummy tokens be created.
(2) Withdrawal: Ether, ERC20 and ERC721 tokens, and ENS names can be withdrawn and

commitment to no-withdrawal for a number of blocks can be made.
(3) Transfer: Ether, ERC20 and ERC721 tokens, and ENS names (which are all viewed

as tokens inside the BarterMachine) can be internally transferred from one account to
another.

(4) Get Info: Various information on orders, tokens, balances, and users can be queried.
(5) Orders (Bids): Orders can entered, cancelled, and listed.
(6) Solution: Feasible bartering solution locking, submission, and validation can be done.

Descriptions of the most of the BarterMachine functions are given in Table 1.
When depositing tokens, the user is required to call the approve function of ERC20 and

ERC721 contracts and then afterwards invoke the BarterMachine WithdrawToken function to
transfer the ownership of the tokens to BarterMachine. The EnterOrder function is used to enter
a bid to the contract. This is done by passing an array of token numbers and the corresponding
array of token quantities. For example, bid b1 in the bartering example given in Figure 2 can
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be be passed as [2,3,4,5,6],[3,1,2,-2,-3]. Note that we reserve the token number 1 for
representing the main currency of the blockchain, i.e. 1 represents the ether.

Table 1. BarterMachine Contract Functions (partial list)

Category Function Description

DepositEther Receives ether to msg.sender’s BarterMachine account

DepositERC20Token Transfers ERC20 token to msg.sender’s BarterMachine account

DepositERC721Token Transfers ERC701 token to msg.sender’s BarterMachine account

DepositENSName Transfers ENS name to msg.sender’s BarterMachine account
Deposit

CreateDummyToken Creates an internal consumable dummy token and returns its token number

WithdrawEther Sends ether to msg.sender’s address

WithdrawERC20Token Transfers ERC20 token(s) to msg.sender’s ERC20 contract account

WithdrawERC721Token Transfers ERC721 token to msg.sender’s ERC721 contract account

WithdrawENSName Transfers ownership of ens name to msg.sender

CommitNoWithdraw Given a token number, amount of tokens and number of blocks, commits no
withdrawal of these tokens for the given number of blocks (note that the tokens
are still available for bartering)

Withdrawal

GetCommitNoWithdrawInfo Given a token and an account numbers returns the no-withdraw details

Transfer TransferInternalToAcc Given a token number, account number and amount of tokens, transfers the
ownership of tokens to the given user internally

EnterOrder Given order details (an array of token numbers and an array of quantities),
enters it as an order and returns the order number

CancelOrder Given an order number, cancels the order, i.e. makes it not live

GetNoOfMyOrders Returns user’s number of orders both live and not live orders

GetTotalNoOfOrders Returns total number of orders of all users both live and not live orders

GetOrder Given an order number, returns details of the order

GetAccLastOrder Given an account number, returns the last order number of the account

Orders (Bids)

GetAccPrevOrder Given an order number, returns the order number of the previous order

GetAccNo Given Ethereum address, returns the account number

GetNoOfAccs Returns number of accounts

GetMyBalance Given an account number, returns the token balance of the calling user

GetAccBalance Given token and account numbers, returns the token balance

GetNoOfTokens Returns number of tokens registered

GetTokenInfo Given token number, returns the information about the token

GetTokenNo Given token identification returns the token number

Get Info

GetTokenTotalBalance Given token number returns the total token balance of all accounts

LockSolnHash Locks a solution

UnlockSolnHash Unlocks a solution

Hash Takes hash of a solution
Solution

SubmitSoln Submits a solution

We focus on the details of the SubmitSoln function since it is the most complex function in
the contract, needing to verify the feasibility of the submitted solution, the sufficiency of user
token balances, collective transfer of tokens among users whose orders make up the solution,
as well as the payment of the incentive to the solution finder. The function steps are given in
Algorithm 1. The symbols used in the algorithm are given in Table 2. The solution is submitted
to the SubmitSoln function as a sorted array of bid numbers in ascending order. For the bartering
example given in Figure 2, the solution is passed as [1,3,4] representing the sequence of bids
b1,b3,b4. Optionally, before submitting a solution, a hash of the solution sequence can be passed
to the LockSolnHash function to lock the sequence and hence prevent others from submitting the
same solution sequence. Note that this only locks the specific submitted sequence and not the
orders. For example, even if [1,3,4] is locked, others can still lock and/or submit a solution
like [4,6]. Lines 3-5 check this hash lock. We assume Solidity maps return 0 when a map does
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not contain a key. A solution can also be submitted without locking it.
SubmitSoln makes two passes over the orders making up the submitted solution. The first

pass (lines 7-16) checks the sufficiency of the user token balances and computes the excess vector.
Line 8 checks the sorted ordering of the solution. Lines 11-13 check the left-hand side of a bid
and make sure that the user has at least that many number of tokens in his balance. If he has, the
offered number of tokens on the left-hand side is deducted from his balance on line 14. If he
does not, the require statement on line 13 aborts execution and reverts the state changes. Line 15
updates the excess vector.

Table 2. Symbols used in SubmitSoln algorithm

Symbol Meaning

si ith order (bid) number in submitted solution.

L[] Map of solution hashes.

as Address of sender (msg.sender).

U [] map of user records indexed by addresses.

p Previous order number.

O[] Array of orders with live bit, array I beginning index and owner fields
Olive,Obeg,Oown.

I[] Array of token numbers appearing in left and right sides of bids with
quantity and token symbol number fields Iquan, It .

B[] Map of (user,token t) pair balances, i.e. how many token t user has inside
BarterMachine contract. A pairing function is used for (user,token t) pairs.

T[] Array of token records. The field T ex[t] denotes the excess vector compo-
nent value computed for a token t.

require(cond) abort execution and revert state changes if cond is false. This function is
provided in Solidity.

The second pass (lines 17-26) checks the feasibility of the solution by making sure excess
vector components are non-negative. While the second pass proceeds, transfer of tokens among
users whose orders make up the solution are also carried out. Feasibility is checked by the require
statement at line 19 which will revert all the contract state changes so far and abort execution if a
negative excess value is encountered. If excess value is non-negative, the user will be delivered
the tokens that he requested on the right side of his order. It is important to focus on the values
assigned to the excess vector component since it triggers token transfer to the bidders and the
solution providers. A non-negative (0 or positive) excess value enables token transfer to the
bidder after the require statement at lines 19-22. A positive excess value enables transfer of
leftover tokens to the solution provider as incentive at lines 23-26. It is possible that the positive
excess value is contributed to by multiple bids in the solution. The positive excess of a token
t will be transferred to solution provider (line 25) when it is first referenced in the loop over
solution bids. At that moment, excess value will be set to 0 at line 26. In subsequent iterations, if
other bids that contribute to the positive excess value of the token t are encountered, the contract
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will still make token t payment to the user whose bid was selected in the solution (since we
check for 0 or positive value at line 19). But it will not make token t payment to the solution
provider, since it was already made previously. On entry to SubmitSoln all excess values are 0.
On successful return from the SubmitSoln, all excess values are guaranteed to be 0. If negative
values are computed within SubmitSoln, the require statement will cause reverting of all contract
state changes and, hence, all excess values will again be zero.

Algorithm 1: Submit Solution

1 Input: Sorted order numbers of the solution [s0,s1, . . . ,sn−1]

2 Output: Returns true/false or the transaction state reverts if requirements are not met

// check hash lock only if it was used

3 h← hash(s0s1 . . .sn−1)

4 if ((L[h] 6= 0)∧ (L[h] 6= as))∨ (U [as] = 0) then
5 return ( f alse)

end
6 p← 0
7 foreach i ∈ [0, . . . ,n−1] do // first pass

8 require (Olive[si]∧ (si > p))
9 p← si

10 foreach j ∈ [Obeg[si−1], . . . ,Obeg[si] do
11 if Iquan[ j]> 0 then // bid left side (positive)

12 k← pairing(Oown[si], It [ j])
13 require (B[k]≥ Iquan[ j])
14 B[k]← B[k]− Iquan[ j]

end
15 T ex[It [ j]]← T ex[It [ j]]+ Iquan[ j]

end
16 Olive[si]← f alse

end
17 foreach i ∈ [0, . . . ,n−1] do // second pass

18 foreach j ∈ [Obeg[si−1], . . . ,Obeg[si]] do
19 require (T ex[It [ j]]≥ 0)
20 if Iquan[ j]< 0 then // bid right side (negative)

21 k← pairing(Oown[si], It [ j])
22 B[k]← B[k]− Iquan[ j]

end
23 if T ex[It [ j]]> 0 then // positive excess

24 k← pairing(U [as], It [ j])
25 B[k]← B[k]+T ex[It [ j]]
26 T ex[It [ j]]← 0

end
end

end
27 return (true)

Consumable dummy tokens enable a user to allow a specified number of his bids to be
eligible to be satisfied. Only the creator of a dummy token can use his own dummy token in
a bid he places. For example, if you have two bids A(1) => ETH(1) and B(1) => ETH(1)

and you want at most one to be satisfied, you can create a dummy token and enter the bids
as: A(1) => DUMMY(1), B(1) => DUMMY(1) and DUMMY(1) => ETH(1). This will have the

28
SSN 2379-5980 (online)

DOI 10.5195/LEDGER.2020.148



LEDGER VOL 5 (2020) 20-35

effect of wanting to sell either A or B, but not both, for 1 ether. Note that excess dummy tokens
are not transferred to anyone at all in SubmitSoln. Once they are used in a satisfied bid as part of
a solution, they should be deducted from the account balance and vanish, since their sole function
is to implement exclusive OR type bid functionality. Hence, they are called consumable tokens.

Finally, we also note that rather than using a map of maps in Solidity, we used only a map
and computed keys by using Szudzik’s “elegant pairing function” at lines 12, 21, and 24.15 This
lowered gas usage a little when accessing map elements.

5. BarterMachine Web User Interface Based on MetaMask

Interacting with the BarterMachine contract by calling contract functions directly can be difficult
for ordinary users. Even running a node and syncing the whole Ethereum blockchain data can
be non-trivial and take a long time. Therefore, in order to make BarterMachine easy to use, a
web-based prototype system that utilizes MetaMask was developed that would allow ordinary
users to immediately use the BarterMachine through their browsers.8 MetaMask is a browser
extension that acts as a bridge between the browser and the Ethereum blockchain. It enables
users to run Ethereum distributed applications in the browser without running a full Ethereum
node. It also provides a secure account vault and a user interface to manage accounts and sign
blockchain transactions.

Figure 3 shows screendumps of the BarterMachine web interface. The menus and the forms
provided by the web interface allow the user to provide data that go into the smart contract
functions given in Table 1. Note that the BarterMachine web interface does not need to run on a
centralized server. BarterMachine is a truly autonomous decentralized exchange (DEX): it stores
nothing on a centralized server. All data is stored on the blockchain; hence, anyone can download
the HTML web page and the Javascript files from Github and run it on their local machine.

A BarterMachine contract is currently deployed on the Ropsten Ethereum test network for
academic research purposes. In addition to providing a user-friendly interface to the contract
functions, the BarterMachine web interface also provides an ERC20 token faucet so that users
can get test tokens and be able to immediately start using the system. The web interface also
includes a bid graph drawing system based on vis.js, as shown in Figure 3(c).16

6. Tests and Function Gas Consumption

We tested our BarterMachine contract using version v2.3.5-stable of the Parity Ethereum client
and version 0.5.1 of the Remix Solidity browser compiler. The testing was done in Parity’s
development mode (i.e. using –config dev option) privately on a Macbook Pro notebook equipped
with a 2.6 GHz Intel Core i5 processor and 8 GB memory.

For testing, we used 260 ERC20 token contracts.17 500 user Ethereum accounts were created,
randomly assigned ERC20 token balances, and assigned new accounts inside the BarterMachine
contract by making deposits. Each user submitted 5 randomly-generated orders. Two rounds of
tests were done which varied the number of tokens on the left and right sides of a bid as follows:
• R1: Up to 2 tokens were used in each side of bid (i.e. left and right sides). This implied

that up to 8 integers were submitted when a bid was submitted (up to 4 token IDs and the
corresponding up to 4 token quantities).
• R2: Up to 20 tokens were used in each side of bid meaning up to 80 integers were
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submitted when a bid was submitted.

(a)

(b)

(c)

Fig. 3. BarterMachine web user interface ; deposit (a), orders listing (b), and graph (c) screens.
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The solver was also invoked to get solutions by specifying a number that indicated the maximum
number of bids in the solution.

On Ethereum networks, one must pay for storage and computation. These costs are specified
in terms of gas. There is also a gas limit that is imposed on Ethereum. A contract’s functions
cannot be executed if they exceed the gas limit. As of March 14th, 2019:
• The gas limit on the Parity based private development node, the Ropsten test network and

the real Ethereum Mainnet is 8M.
• The standard gas price taken from ETH Gas Station is 2 Gwei and the price of 1 ether

(ETH) is 133 USD.18

Apart from testing for the correctness of the BarterMachine contract, we also spent a lot of
effort to reduce the gas costs of contract deployment and function. To reduce deployment costs,
our data structure definitions and functions were put in a library contract. The BarterMachine
contract simply called these library functions. When EnterOrder and SubmitSoln functions are
called, integer lists are passed as parameters which are then iterated in loops. Therefore, the gas
usages of these two functions are critical. We investigated the relative gas usage of these two
functions.

The gas usage of the EnterOrder function is shown in Figure 4. The plot shows the average
gas and USD costs of entering orders of various sizes. We refer to the summation of the size
of left- and right-hand sides of a bid as the size of an order (bid). For the example in Figure 2,
size of order b1 is 5 and size of b2 is 2. Currently, the commercial exchanges provide token pair
trading (i.e. size of order is 2). Our contract allows arbitrarily-sized bid patterns to be submitted.
As Figure 4 shows, entering an order even with a size of 20 consumes 1.25M gas and does not
exceed the gas limits.
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Fig. 4. Gas and dollar costs of entering orders with different sizes (i.e. total number of tokens
in the left and right sides of order)

To investigate SubmitSoln’s gas consumption, we submitted solutions with various numbers
of bids in them. The sizes of the solutions and their gas usages are reported in Table 3. In
SubmitSoln, two passes are made over the tokens that appear in the left and right sides of bids in
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the solution. As a result, the actual number of iterations depend not on the number of bids that
form the submitted solution, but rather on the summation of sizes (total left and right sides) of
bids in the solution. As seen in Table 3, when this summation of sizes reaches around 230, the
8M gas limit is reached. A gas limit greater than 8M on the Ethereum networks will allow bigger
number of bids and hence larger sized cycles and hypercycles to be entered as solutions.

Table 3. Gas and USD costs of the SubmitSoln Function

Test No. of bids Summation of left and Gas Used by Cost in USD
Round in Solution right sizes of bids SubmitSoln as of March 14, 2019

R1

20 60 1971238 0.52
30 88 2768302 0.74
40 120 5176580 1.38
80 234 9901705∗ 2.63
160 481 18987328∗ 5.05

R2

10 59 1812913 0.48
13 83 2484672 0.66
20 126 4627089 1.23
40 251 10110622∗ 2.69
80 529 18741627∗ 4.99
160 1102 34522770∗ 9.18

∗ exceeds gas limit 8M on Ethereum Mainnet, Ropsten network and the private development node.

In order to find solutions, we employ a Gurobi-based integer programming solver.4 The
integer programming formulation given in “Resource Bartering in Data Grids” is used. 6 The
constraints are augmented with an additional constraint that limits the number of bids in the
solution to some specified number. This is done so as to find solutions with small sizes which in
turn will keep the gas expenditure in the SubmitSoln function small, and thereby avoid exceeding
the gas limit. As an objective function, we use a function that maximizes the total number of
tokens in the excess vector. It is possible to use other objective functions also: for example, the
numbers of tokens in the excess vector can be multiplied by the weights or prices of tokens.
Table 4 shows how long the solver takes to solve some problem instances that are randomly
generated. We used a time limit of 20 minutes on the Gurobi solver. In tests T5 and T9, the sign
X means that Gurobi was not able to find the optimal solution within 20 minutes. Even though
we are solving an NP-hard problem, we note that the performance of the commercial integer
programming solver Gurobi is impressive considering that we have the number of variables (no.
of bids) in the thousands to million range.

Our smart contract has been deployed on the Ropsten test network and can be used by visiting
the web site:

https://bartermachine.github.io/bartermachine/ropsten/
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Table 4. Gurobi solution times for some problem instances with time limit of 20 minutes

No. of Max left Max right Soln.
Test No of No. of bids per No. of hand size hand size Solution Time
Case tokens users user bids of bid of bid size (secs)

T1 677 1000 6 6000 4 4 10 8.7

T2 677 10000 6 60000 4 4 10 13.8

T3 677 10000 6 60000 3 3 40 25.4

T4 2000 50000 6 300000 3 3 40 126.2

T5 10000 10000 10 100000 10 10 40 X

T6 2000 100000 10 1000000 4 4 40 447.7

T7 2000 100000 10 1000000 3 3 40 213.5

T8 5000 100000 10 1000000 3 3 40 870.1

T9 10000 200000 10 2000000 3 3 40 X

7. Discussion and Conclusion

One of the goals of this paper is to draw attention to the advantages that direct bartering can have
over transacting with money alone. Whereas money can act as a store of value and medium of
exchange, it also introduces complications and hinders trading in situations where the buyers
do not have money, and yet, a cycle of trading pattern is possible. A simple example from the
domain name markets can illustrate this. Suppose A, B, and C are domain names owned by three
persons. A cycle of trading pattern A => B => C => A may be possible because each person
wants to sell his domain name and get the other one which is owned by the other person. If they
post their domain names for sale asking 10,000 dollars, they can wait for a long time and not be
able to sell their domain names or use the proceeds to buy the domain name they want. Direct
bartering can allow them to trade their domain names without the need to have money.

The Barter Economy is a superset of the Monetary Economy in the sense that it provides
richer trading patterns to be discovered. Hence, collective trading patterns that may be difficult to
efficiently coordinate in Monetary Economy may be possible in the Barter Economy which in
turn may provide greater benefit to the society. The catch, however, is the problem of finding
these circular trading patterns (i.e. cycles, circulations, hypercycles and hypercirculations). Fast
optimization packages like Gurobi are making it possible to find these trading patterns easily.
What was missing was an autonomous exchange that would collect the bids and the solutions and
carry out the transfer of ownership of the tokens collectively and atomically. Our SubmitSoln
algorithm solves this problem.

As the bids accumulate, very large sized instances of the most general NP-hard bartering
problem will be challenging to solve; however, there are a few approaches that may be pursued in
future works to reduce the problem sizes and possibly get, not necessarily optimal, but feasible
and profitable solutions:

(1) Barter-connected components of the whole bid graph can be computed using the linear
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time algorithm described in “Resource Bartering in Data Grids”.6 The optimization
problem can then be solved on each smaller component in parallel. Also, due to the
geographical proximity of users bartering such things as tickets, houses, and cars, we can
expect localized components corresponding to towns and cities to be present. Even if the
whole graph is connected, a heuristic that employs some graph partitioning software such
as Metis can be used to break up the bid graph into multiple parts with small cut sizes and
hence producing smaller-sized components on which the Gurobi solver can be applied in
parallel.

(2) The simpler versions of the problem, e.g., differential barter auction with unrestricted
solution size described in “Used Car Salesman Problem,” (Özturan, 2005) and “Digraphs:
Theory, Algorithms and Applications” (Bang-Jensen and Gutin, 2009) can be solved
by polynomial time minimum cost network flow algorithms. 2, 9, 10 Even though the bid
pattern is simpler in this case, (i.e. item1+money => item2 or item1 => item2+money,
or item => money, or money => item ), it may appeal to people when bartering their
cars, tickets, or houses with differential money amounts. Components involving only
these bids can be extracted and solved fast. Also, the users can be informed that if they
submit bids in differential form, their bids are more likely to be picked up by solution
finders employing fast polynomial time minimum cost solvers.

We designed our functions (in particular the EnterOrder and SubmitSoln functions) in such a
way that they use storage and computation that is proportional to the sizes of the bids that are
passed as parameters. The bartering problem solver may produce solutions that have many bids
in them. We modified our solver and added constraints so as to produce solutions with small
numbers of bids. This enabled us to avoid the problem of exceeding the gas limit in some cases.
However, there may be cases where small sized solutions may not exist but large sized ones exist.
Entering of solutions with many bids (i.e. very long cycles/hypercycles) can perhaps be made by
multiple function calls. This approach, however, may require additional costly contract storage
to store temporary values and hence and not be as economical as the single call approach that
uses a single excess array. Our future work will focus on addressing these challenges.

Specifically, our future plans include:
• Deployment on the real Ethereum and Ethereum Classic main networks after making

large scale stress tests on the Ropsten test network and after country regulations regarding
distributed autonomous exchanges become clearer,
• Introducing bids with deadlines,
• Addressing the problem of submitting long sized solutions.
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