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RESEARCH ARTICLE

The Bitcoin Mining Game
Nicolas Houy∗†

Abstract. This article deals with the mining incentives in the Bitcoin protocol. The mining
process is used to confirm and secure transactions. This process is organized as a speed game
between individuals or firms – the miners – with different computational powers to solve
a mathematical problem, bring a proof of work, spread their solution and reach consensus
among the Bitcoin network nodes with it. First, we define and specify this game. Second,
we analytically find its Nash equilibria in the two-player case. We analyze the parameters
for which the miners would face the proper incentives to fulfill their function of transaction
processors in the current situation. Finally, we study the block space market offer.

1. Introduction

Bitcoin is a network protocol that enables individuals to transfer property rights on account
units called "bitcoins", created in limited quantity. When an individual sends some bitcoins to
another individual, this information is broadcast to the peer-to-peer Bitcoin network. However,
for technical purposes we won’t address here, this transaction needs to be included – together
with other transactions forming a block – in the blockchain in order to be confirmed and secured.
As a consequence, the blockchain is a public ledger that contains the whole history of all
the transactions of bitcoins ever processed and all Bitcoin users can trust this decentralized,
distributed ledger.

It is the role of miners to do this work of confirming and securing transactions through
insertion in the blockchain. Practically and slightly simplifying, for any miner, this work consists
in considering a set of transactions that are present in the network, solving a mathematical
problem that depends on this set and spreading the result to the Bitcoin network for this solution
to be checked and for it to reach consensus. Once all these steps are done successfully, the set of
transactions considered by the miner forms a block that is added on top of the blockchain. The
first miner to succeed in this process is rewarded in bitcoins for his useful work.

In the current implementation of Bitcoin, this reward comes from both an ex-nihilo creation of
some new bitcoins and some fees Bitcoin users can add to their transactions. Since some bitcoins
are created in the mining process and in order to control the monetary base, mining is made more
complex than it could be. And, since in a first approximation, the probability for each miner to
solve a mining problem depends on his computational power, the complexity of mining is made
proportional to the total computational power of all miners. More precisely, the complexity is
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dynamically adjusted so that a block solving – and hence a creation of bitcoins – occurs every
ten minutes in expectation. Once a block is inserted in the blockchain, the mathematical problem
faced by all miners are modified and we can consider that a fresh new speed game starts between
miners. Hence, the whole building of the blockchain can be considered as independent block
insertions from the miners’ point of view.

In this article, we tackle the question of the incentives faced by the miners as a function of
the reward scheme and values. First, let us see the possible gains for a miner. As it is today,
the fixed reward is 25 bitcoins (BTC) per block. The variable reward is typically 10−4 BTC per
transaction today but it can also be considered as the price on the market for space in blocks.1

Second, let us see the cost structure. When mining a block, a miner is free to choose which of
the transactions in the network he wishes to include in the block he is trying to solve. In a very
good first approximation, computing the mining mathematical problem with more transactions
included in it is not more expensive in terms of CPU, disk or bandwidth use. However, it should
be considered that the larger a block, the longer it takes for it to be spread in the Bitcoin network
and reach consensus. Then, including transactions in a block can have the adverse effect of
lowering the probability of a miner to earn any reward. When a block is mined but is outraced
by another one, it becomes orphaned and all associated rewards are lost for its finder. Then,
there exists a tradeoff problem that sets the number of transactions miners should include in their
blocks. However, as we will show, the solution to this tradeoff depends on how many transactions
other miners include in the block they are trying to mine. Then, the number of transactions
included in blocks is the outcome of a game: the Bitcoin mining game that we propose to study
in this article. Notice that our study is inspired by the qualitative intuitions given by Andresen.19

It is also of importance in the current context of hot debates about the block size limit that should
be imposed in the Bitcoin protocol. Indeed, this debate is much about the transaction space
offer function of miners. For instance, Rizun constructs this offer function in a decision theory
framework considering the costs and benefits mentioned above and atomistic miners.29 In this
article, we show that the game theory framework is more adapted to tackle this question.

In Section 2, we describe the Bitcoin mining game. In Section 3, we analytically study
the Nash equilibria of this game in the case of two miners. In Section 4, we study the current
situation of the Bitcoin mining environment. We show that Bitcoin miners are currently not
playing strategies of a Nash equilibrium for the typical fee.2 Indeed, a unilateral deviation by
any miner could increase his benefit by about 1%. We also show that with the current incentives,
all miners should simply play the strategy of including no transaction in their blocks. Finally,
we will show that, ceteris paribus, the equilibrium where no miner includes a transaction in a
block will stop being one in about 5 years or today if the transaction fee is increased by a factor
greater than 3. In Section 5, we study implications in terms of block space market offer. Section
6 concludes.

2. Model

Let us consider a set N = {1, ...,N} of miners in the Bitcoin network with N ≥ 2.3 Each miner
i ∈ N has a relative computational power hi > 0 such that ∑

j∈N
h j = 1. Miners play against each

other in a race to find the solution of a mathematical problem. This mathematical problem is
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solved by a try and guess strategy and the occurrence of solving the problem can be modeled as a
random variable following a Poisson process. As explained in the introduction, the complexity
of finding a block is dynamically adjusted so that this operation takes T = 600 seconds in
expectation. Then, the mining Poisson process has a fixed parameter T−1 for the whole network
of miners.

The set of transactions included in a block to be solved is chosen by each miner. This set
has no effect on the cost to solve it in a first approximation. However, once a miner has found
a block with a given set of transactions in it, he needs to broadcast his solution to the Bitcoin
network and his solution must reach consensus. The time needed for a block to reach consensus
is dependent on its size and hence on the set of transactions in it. Let τ(Q) be the time needed
for a block with size Q to reach consensus. We will make the assumption that this time function
is linear, τ(Q) = z.Q with z > 0.4 The first miner to find a block that reaches consensus earns (in
bitcoins) a fixed reward, R≥ 0, and a variable one, ρ.Q, with ρ ≥ 0 the fee density.

2.1. Mining payoffs—Let us first compute the mining benefit earned by miners. We assume
that all miners start trying to find a new block at the same time, t = 0. Each miner i ∈ N tries to
mine a block with size Qi ≥ 0, with, for the sake of simplicity, Qi ∈ R+. Let

−→
Q = (Q1, ...,QN)

be the sequence of sizes for the next block to be found, one for each miner. Obviously, using
standard Poisson process results, the probability for i to find a block between t and t +dt and
that this block will be the first to reach consensus is:6 ∏

j∈N,t+τ(Qi)−τ(Q j)≥0
exp(−h jT−1(t + τ(Qi)− τ(Q j)))

hiT−1dt. (1)

After simple calculation, for any miner i ∈ N, the probability Pi(
−→
Q ) to find a block and that this

block will be the first to reach consensus is the integral of Equation 1 between t = 0 and t = ∞. It
can be rewritten as

Pi(
−→
Q ) = hiT−1

∫
∞

t=0
exp
(
−T−1

(
(1−Bi(

−→
Q , t))(t + τ(Qi))+Ai(

−→
Q , t)− τ(

−→
Q )
))

dt,

where
τ(
−→
Q ) = ∑

j∈N
h jτ(Q j),

and ∀i ∈ N,∀t > 0,6

Bi(
−→
Q , t) = ∑

j∈N
h j1(τ(Q j)>t+τ(Qi)),

Ai(
−→
Q , t) = ∑

j∈N
h jτ(Q j)1(τ(Q j)>t+τ(Qi)).

The expected reward Πi(
−→
Q ) is equal to the probability to find the first block to reach consensus

times the reward if this is the case.

Πi(
−→
Q ) = (R+ρ.Qi)Pi(

−→
Q ). (2)

The following proposition is straightforward from Equations 1 and 2.7

Proposition 1. Let i ∈ N and
−→
Q ∈ (R+)N .
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(1) [] ∀ j ∈ N \{i}, ∂Πi(
−→
Q )

∂Q j
≥ 0,

(2) [] ∀ j ∈ N \{i}, ∂Πi(
−→
Q )

∂Q j
> 0 whenever (R+ρ.Qi)> 0,

(3) []
∂Πi(

−→
Q )

∂Qi
< 0 whenever ρ = 0 and R > 0,

(4) []
∂Πi(

−→
Q )

∂Qi
= 0 whenever ρ = 0 and R = 0.

Proposition 1 ((1)-(2)) shows that considering larger blocks by a miner has positive exter-
nalities on other miners. Indeed, when a miner i ∈ N tries to solve a larger block, he makes the
time needed to spread his block longer, in turn allowing more time for other miners to find the
next block, spread it to the network and reach consensus with it. Then, the expected profit of a
miner increases with the size of blocks other miners consider. However, notice that this does not
imply that the expected reward Πi is necessarily a decreasing function of Qi. Indeed, because the
set of transactions in a block is not constant, the mining race is not a constant-sum game. More
precisely, it is true that trying to solve a larger block decreases i’s probability to find it and reach
consensus with it first (Proposition 1 ((3)-(4))). But it also increases the reward he earns in case
he is actually the first one to find and spread the next block to consensus. Notice also that, in
general, considering a larger block by a miner modifies the marginal – with respect to their own
block size decisions – probability of other miners to be rewarded. This implies that the decisions
regarding the sizes of their blocks by miners should be treated in a game theoretical framework
rather than in a decision theoretical framework.

Proposition 2 shows that the sum of the expected rewards for all miners has no maximum
since it increases with the size of blocks and we considered for now that this value has no upper
limit.8

Proposition 2. Let ρ > 0 and let
−→
Q ,
−→
Q′ ∈ (R+)N . If

−→
Q >

−→
Q′, then ∑

i∈N
Πi(
−→
Q )> ∑

i∈N
Πi(
−→
Q′).

Notice that, obviously, when ρ = 0, the sum of the expected rewards equals R regardless of−→
Q and Proposition 2 does not apply.

Finally, we will need the following lemma in the remainder of our article. Assume that
all miners consider blocks with the same size, formally, ∀i ∈ N,Qi = Q. Then, for each miner
i ∈ N, the probability to earn the reward associated with a block solving is just the probability to
solve the mining mathematical problem first and hence is directly proportional to the relative
computational power hi. Formally, in this case, ∀i ∈ N,∀t ≥ 0,Ai(

−→
Q , t) = Bi(

−→
Q , t) = 0 and

Lemma 2.1 is proved with simple calculation.

Lemma 2.1. Let
−→
Q ∈ (R+)N be such that ∀i ∈ N,Qi = Q. Then, for all i ∈ N, Pi(

−→
Q ) = hi and

Πi(
−→
Q ) = (R+ρ.Q)hi.

2.2. The Bitcoin mining game—We call the Bitcoin mining game, the game
G = (N,(Si)i∈N ,(Πi)i∈N) where N is the set of players, (Si)i∈N with ∀i ∈ N,Si = R+ is the
set of strategies and (Πi)i∈N as described in Equation 2 is the set of payoff functions.

For each miner i ∈ N, the correspondence of best response for the size of the block to mine,
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Bi, is given by solving the following maximization program.

Bi(
−→
Q−i) = arg max

Qi∈R+
Πi(
−→
Q ). (3)

with the usual meaning for the notation
−→
Q−i = (Q1, ...,Qi−1,Qi+1, ...,QN).

Let E ⊆ (R+)N be the set of Nash equilibria of the Bitcoin mining game. Formally, ∀
−→
Q∗ =

(Q∗1, ...,Q
∗
N) ∈ (R+)N ,

−→
Q∗ ∈ E if and only if ∀i ∈ N,Q∗i ∈ Bi(

−→
Q∗−i).

3. The two-miner case

For the sake of simplicity, we now concentrate on the case with N = 2 even though most of
our results can be generalized to the N > 2 case with no logical difficulty but at the price of
cumbersome calculation.9

Let us consider the Bitcoin mining game G with N = {1,2}. For any miner i ∈ N, if
Qi ≥ Q3−i,10 then ∀t > 0, Ai((Q1,Q2), t) = Bi((Q1,Q2), t) = 0. Then, the expected reward
earned by miner i is

Πi(Q1,Q2) = (R+ρ.Qi)hi exp
(
−(1−hi)T−1(τ(Qi)− τ(Q3−i))

)
.

Following, assume Qi < Q3−i, the expected reward earned by miner i is

Πi(Q1,Q2) = (R+ρ.Qi)
(
1− (1−hi)exp

(
−hiT−1(τ(Q3−i)− τ(Qi))

))
.

Our first result is rather trivial and follows directly from Proposition 1((3)). When ρ = 0 and
R > 0,11 considering a larger block has the only consequence to make longer the period needed
for a miner’s block to reach consensus. The marginal reward associated with this inclusion is 0.
Hence, there are only negative incentives for miners to include transactions in blocks.

Proposition 3. Let ρ = 0 and R > 0. The Bitcoin mining game has a unique Nash equilibrium
(Q∗1,Q

∗
2) ∈ (R+)2 with Q∗1 = Q∗2 = 0. Moreover, Π1(Q∗1,Q

∗
2) = h1R and Π2(Q∗1,Q

∗
2) = h2R.

For non trivial cases with ρ > 0, let us first concentrate on the game with symmetric com-
putational power, h1 = h2 = 1/2. In this case, there exists a unique Nash Equilibrium and it is
symmetric.

Proposition 4. Let ρ > 0. Assume h1 = h2 = 1/2. The Bitcoin mining game has a unique Nash

equilibrium (Q∗1,Q
∗
2) ∈ (R+)2 with Q∗1 = Q∗2 = max

{
0,

2T
z
− R

ρ

}
. Moreover, Π1(Q∗1,Q

∗
2) =

Π2(Q∗1,Q
∗
2) = max

{
R/2,

ρ.T
z

}
.

Now, let us study the asymmetric case. With no loss of generality, let us assume h1 > h2.

Proposition 5. Let ρ > 0. Assume h1 > h2. The Bitcoin mining game has a unique Nash equilib-
rium (Q∗1,Q

∗
2) ∈ (R+)2 with

• if
T

z(1−h1)
− R

ρ
≤ 0, Q∗1 = Q∗2 = 0.

• if
T

z(1−h1)
− R

ρ
> 0, Q∗1 =

T
z(1−h1)

− R
ρ
> Q∗2 ≥ 0.
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Then, in the asymmetric case, we can notice that in all cases, the size of the block looked for
by the miner with the greatest computational power is larger than the size of the block looked for
by the miner with the lowest computational power. Moreover, there is a set of parameters for
which considering the smallest block possible for both miners is the only Nash equilibrium of the
Bitcoin mining game. Now, the question is to know whether this set of parameters is relevant to
Bitcoin. One way to check this is to study the Bitcoin environment as it is today.

4. The current case

In this Section, we study the current behavior of the miners in the Bitcoin network. In fact,
miners can be mining pools but, for the sake of simplicity,12 we will make no difference as
we will consider that the best strategy for a miner is the same whether it is a pool or a single
miner, benefits being redistributed among the participants of a mining pool, proportionally to the
computational power they bring along to their pool. All the data we need for this study is public
in the Bitcoin blockchain and protocol or relies on the simplifying assumption that, today, all
miners include all the transactions present in the network when trying to find a block.13 We will
also work with a typical fee of 10−4 BTC per 0.6kB transaction. Unless otherwise stated, the
values for our computations are displayed in Table 1.

Table 1. Data values.

Data Value Dimension Description and Source

T 600 second Bitcoin protocol parameter.
s 0.6 kB Average transaction size,

statistics from the blockchain.
z 0.017 second.kB-1 Marginal time needed to reach consensus

per kB.29, 31, 32

zs 0.0102 second.tx-1 Marginal time needed to reach
consensus per transaction (tx), z× s.

c 10−4 BTC Typical fee for a
low priority 0.6 kB transaction.

R 25 BTC Bitcoin protocol current
implementation parameter.

Let us start our analysis of the current situation as displayed in Table 2. In reality, transactions
can have different sizes and require different levels of fees to be computed. The size of a
transaction depends on many parameters (number of inputs and outputs mainly) but not directly
on the amount paid in the transaction. Throughout this section, we will make the simplifying
assumption that all transactions have the same size. 884 is the average number of transactions in
the blocks inserted in the blockchain between blocks 377,261 and 378,260. The average size of a
transaction over the same period is 600 bytes.

We will also consider that the Bitcoin network computational power is distributed as shown in
Table 2 (column B). We inferred these relative computational powers of miners from an analysis of
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the blocks found. Indeed, we make, as already noted, the assumption that all miners include all the
transactions in the network in their blocks. Formally, with our notation, ∀i∈N,Qi = 884×0.6kB.
Then, by Lemma 2.1, the probability to solve a block for any miner is exactly equal to his relative
computational power. Further, we make the assumption that the frequency of blocks found by a
miner, that we can observe, is the best estimation of the probability that he solves a block and,
hence, the best estimation of his relative computational power.

We can now consider each miner and compute his best response to the other miners’ current
strategy. This optimal number of 0.6kB transactions to include in the current computed block is
0 for all miners (column D). This shows that the current situation is not a Nash Equilibrium and
all miners have a profitable deviation. If unilaterally mining blocks with no transaction, a miner
would increase his probability to earn the fixed 25 BTC reward (as displayed in column E) at
the cost of the 884×10−4 = 0.0884 BTC variable reward in case of successful mining. In the
current case, this deviation would lead to a higher expected benefit (columns F,G).

Table 2. A: miner’s name, B: relative computational power, C: expected reward when ∀i ∈
N,Qi = 884× 0.6kB, D: optimal number of transaction included by miner i in the current
block when ∀ j ∈ N \{i},Q j = 884×0.6kB (solution to Equation 3), E: probability to be the
first miner to find a block reaching consensus when ∀ j ∈ N \{i},Q j =×0.6kB and Qi given
in D, F: expected reward when ∀ j ∈ N \ {i},Q j = 884× 0.6kB and Qi given in D, G: F-C
difference in %. H: expected reward of miners in BTC when ∀i ∈ N,Qi = 0.

A B C D E F G H

F2Pool 18.900% 4.74171 0 19.130% 4.78251 0.860% 4.725
AntPool 18.200% 4.56609 0 18.423% 4.60586 0.871% 4.550
Bitfury 14.400% 3.61273 0 14.585% 3.64626 0.928% 3.600
BTCC 13.100% 3.28658 0 13.271% 3.31773 0.948% 3.275
KNCMiner 8.100% 2.03216 0 8.212% 2.05295 1.023% 2.025
BW Pool 7.200% 1.80636 0 7.300% 1.82509 1.037% 1.800
Slush 6.900% 1.73110 0 6.996% 1.74912 1.041% 1.725
21 Inc. 3.900% 0.97845 0 3.956% 0.98908 1.086% 0.975
Eligius 3.500% 0.87809 0 3.551% 0.88769 1.092% 0.875
GHash.IO 1.900% 0.47668 0 1.928% 0.48200 1.116% 0.475
Telco 214 1.600% 0.40141 0 1.624% 0.40591 1.121% 0.400
BitMinter 0.700% 0.17562 0 0.710% 0.17761 1.135% 0.175
Other 0.500% 0.12544 0 0.507% 0.12687 1.138% 0.125
EclipseMC 0.400% 0.10035 0 0.406% 0.10150 1.139% 0.100
Kano CKPool 0.300% 0.07527 0 0.304% 0.07612 1.141% 0.075
Solo CKPool 0.200% 0.05018 0 0.203% 0.05075 1.142% 0.050
BitClub Network 0.100% 0.02509 0 0.102% 0.02538 1.144% 0.025
P2Pool.org 0.100% 0.02509 0 0.102% 0.02538 1.144% 0.025

We can also check that all miners including no transaction in the block they are mining
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(∀i∈N,Qi = 0) is a Nash Equilibrium with the current parameters given in Table 1. The expected
reward for miner i, in this case where ∀ j ∈ N,Q j = 0 is hiR by Lemma 2.1. The actual values are
given in Table 2, column H.

Now, we study the conditions under which the situation where all miners include no trans-
action in their blocks is a Nash equilibrium. From Equation 2, it is straightforward to see that
Πi(
−→
Q ) = (R+ρQi)hi exp

(
−T−1(1−hi)τ(Qi)

)
whenever

−→
Q is such that ∀ j ∈ N \{i},Q j = 0.

Then, since ρ > 0, the best response number of transactions to include in a block by i ∈ N is13

argmax
xi>0

Πi(
−→
Q ) = {max{0, T

(1−hi)z
− R

ρ
}}. Then, the situation where all miners include no

transaction in their blocks stops being a Nash equilibrium when ∃i ∈ N,
cT

(1−hi)zs
> R. The high-

est value of R for which this occurs is R≈ 7.25 BTC below which F2Pool will have an incentive
to include some transactions in the blocks it mines. The fixed reward was 50 BTC in 2009, in
the first days of Bitcoin. This amount is halved every 210,000 blocks (about 4 years). Then, the
situation with R≤ 7.25 BTC will occur in about 5 years when R = 6.25 BTC.15Obviously, this
5 years projection should be seen as an illustration rather than a prediction. Indeed, it would
certainly be unsound to state that, during the next 5 years, the mining environment will remain
unchanged, especially regarding the computational power distribution among miners and z that
highly depends on bandwidth. Moreover, the equality between the time needed to mine 210,000
blocks and 4 years is inaccurate if, as it is the case today, the actual computational power of
the Bitcoin network is continuously and significantly increasing and hence above the predicted
computational power at each difficulty adjustment.

Equivalently, the lowest value of c for which the situation where all miners include no
transaction in their blocks is not a Nash equilibrium is c≈ 3.4×10−4 BTC. This corresponds
to an increase from the current value of the transaction fee of a factor approx. 3.5. At the time
this article is written, 3.4× 10−4 BTC can be bought for about $0.15. With R = 25 BTC and
c = 10−4 BTC, we can estimate the maximal value of z for which all miners mining empty blocks
is not a Nash equilibrium of the Bitcoin mining game with the current computational powers.
After simple calculation, this value is z≈ 0.0049 s.kB-1.

5. Block space offer

In this section, we study the relationship between Rizun29 and our study. In particular, we look
at the implications in terms of block space offer. Rizun (Equation 1029) finds the following
expression for the block space offer on the market as a function of ρ ,

Q = max{0, T
z

ln
(

ρT
zR

)
}, (4)

where, with our notation, Q = ∑
i∈N

Πi(
−→
Q )Qi. In order to obtain this result, Rizun29 makes two

implicit assumptions: a) there is an infinite number of symmetric atomistic miners, and b)
miners consider that others mine empty blocks, which implies the orphaning probability (Rizun’s
Equation 429) as suggested by Andresen.19 In order to be in the same framework, we will also
make the assumption of an infinite number of symmetric atomistic miners. In this case, we find16

Q = max{0, T
z
− R

ρ
}, (5)
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In Fig. 1, we display Q as a function of ρ as obtained in Equations 4 and 5 for parameter as given
in Table 1.

Fig. 1. Q as a function of ρ as obtained in Equations 4 (light grey) and 5 (black).

Since we consider the case with atomistic miners, the only reason why Equations 4 and 5
differ is the following. Rizun29 considers that decisions are made by miners considering other
miners try to mine empty blocks. On the contrary, we consider that, at the Nash equilibrium,
miners consider the optimal decision made by other miners. Obviously, close to the point where
miners actually mine empty blocks, both assumptions coincide. This is why we can see that Q as
obtained in Equations 4 and 5 are strictly positive for the same values of ρ , i.e. when ρ > zR/T
and are equal for small deviations of ρ above zR/T .

Another important difference between Equations 4 and 5 is that when ρ tends to infinity,
Equation 4 has no upper bound whereas Q tends to T/z from below in Equation 5.17 The reason
why Q has an upper bound in our model is as follows: as ρ increases, all miners are willing to
include more transactions in their blocks in order to enjoy larger variable rewards. However, as
other miners include more transactions in their blocks, this makes the incentive to outrace them
by decreasing the size of the block to be found more important. And hence, this limits the trend
to always include more transactions. This negative feedback does not exist in Rizun29 because
the changes of behavior by other miners is not considered.

6. Conclusion

In this article, we have introduced and studied the Bitcoin mining game. When miners make
a decision regarding how many transactions they should include in the block they are mining,
they must study the tradeoff between, on the one side, including more transactions and hence
earn more transaction fees if they find the current block first and, on the other side, including
less transactions in order to decrease the time they need to spread their block solution and reach
consensus with it, hence increase their probability to include their block in the blockchain first.
We have studied the two-miner case analytically. We have also showed that, in the current Bitcoin
mining environment, miners are not playing strategies of a Nash equilibrium of the Bitcoin
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mining game as we stated it. Instead, they should all stop including any transaction in their
blocks. We showed that this situation where all miners do not include any transaction in their
blocks would stop being a Nash Equilibrium if the transaction fee was multiplied or, equivalently,
the fixed reward divided by a factor greater than 3. Finally, we studied the difference between
our game theoretical approach and the decision theoretical approach displayed in Rizun.29

We can see three limitations to our study. The first one is about the sensitivity of our results
to the parameters’ values. Our result stating that, at the Nash equilibrium, miners should not
include transactions in their blocks is strongly dependent on, for instance, the marginal time
needed to reach consensus. We took the best estimate for this parameter, 0.017s.kB−1 but it may
be the case that it is smaller in reality and hence, the current case be a Nash Equilibrium. Another
assumption of ours is that transactions are all the same in size. In reality, it is not the case and
considering this could change some results in a more detailed version of our model.

The second limitation of our study is about the security of the Bitcoin protocol. For Bitcoin
to be used as an efficient payment system, it is a minimal necessary requirement that transactions
be processed. However, this is not sufficient. Indeed, Bitcoin is vulnerable to what are called
51% attacks.22, 24, 26 Such attacks can occur when a miner can solve too many blocks in a row in
expectation. It is usually said that this is the case when a miner owns strictly more than 50% of the
computational power.18 In order to make such an attack costly, the total computational power of
the Bitcoin network should be as large as possible. Since we did not consider the computational
power as an endogenous variable, what matters in our study when an agent makes his decision
regarding the number of transactions to be included in his block is the ratio between the fixed
and the variable rewards (R/ρ). However, the miners’ benefits that will drive the computational
power purchase and hence eventually decide on the security of Bitcoin will depend on R and ρ in
absolute values. This aspect has already been studied, though in a different context.25

The second limitation is about the value of the Bitcoin network. Miners are rewarded in
bitcoins. Hence, they have a vested interest in it to function well. Miners know that not processing
transactions in their blocks means that Bitcoin loses some if not all of its value. Hence, any
reward they may earn from their mining activity has no value either in this case. This suggests
that the Bitcoin mining game should include a supplementary public good game on top of it.
Other reasons could explain why, even though it may theoretically not be an equilibrium to
include transactions in blocks today, miners still do so. The power of default, ideology, fear to
appear as a free-rider in the eyes of the Bitcoin community or non-awareness of the theoretical
predictions could be such reasons.

Today, there is a debate in the Bitcoin developers community about the variable cost ρ .
Should it be encoded and imposed in the protocol as it is partially today or should it be left to
the market to decide its value? In the market case, if Bitcoin users want their transactions to be
processed, then, they should attach to them a high enough fee. We believe that this paper gives a
first result in the study of such a market: if a market was to be organized, with today’s parameter,
the transaction processing offer would be non null for transactions fees at least 3.4×10−4 BTC.
For other reasons, we are rather uncertain about the relevance of such a market because of the
large externalities induced by the mining activity. It is well-known that markets are not efficient
when externalities are at play.
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Appendix A:

Most of our analytical results are proved using the following lemmas.
Let us first define the following functions:

Π
+(Qi,Q3−i) = (R+ρ.Qi)hi exp

(
−(1−hi)T−1(τ(Qi)− τ(Q3−i))

)
,

Π
−
i (Qi,Q3−i) = (R+ρ.Qi)

(
1− (1−hi)exp

(
−hiT−1(τ(Q3−i)− τ(Qi))

))
.

Then, Π
+ is the expected profit of a miner that would include more transactions than the other

miner. Π
− is the expected payoff of a miner that would include strictly less transactions than the

other miner (these functions are still both defined on (R+)2).
Lemma 1.1 states that ∀i ∈ N = {1,2},Πi(Q1,Q2) is continuous and has a continuous deriva-

tive with respect to Qi at Qi = Q3−i > 0.
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Lemma 1.1. Π
+(Qi,Q3−i) = Π

−(Qi,Q3−i) at Qi = Q3−i.

Proof. With simple calculation, it is straightforward to show that Π
+(Qi,Q3−i) = (R+ρQi)hi =

Π
−(Qi,Q3−i) in Qi = Q3−i.

Lemma 1.2.
∂Π+(Qi,Q3−i)

∂Qi
=

∂Π−(Qi,Q3−i)

∂Qi
at Qi = Q3−i.

Proof. It is easy to get
∂ ln(Π+(Qi,Q3−i))

∂Qi
=

ρ

R+ρQi
−h3−iT−1z, and

∂ ln(Π−(Qi,Q3−i))

∂Qi
=

ρ

R+ρQi
−

h3−ihizT−1 exp
(
−hiT−1(τ(Q3−i)− τ(Qi))

)
(1−h3−i exp(−hiT−1(τ(Q3−i)− τ(Qi))))

,

and it is straightforward to check that both are equal when Q3−i = Qi.

Lemma 1.3.
∂ 2Π−(Qi,Q3−i)

∂Q2
i

≤ 0.

Moreover, if R > 0 or c > 0,
∂ 2Π−(Qi,Q3−i)

∂Q2
i

< 0.

Proof. Let P(Qi,Q3−i) = h3−i exp
(
−hiT−1(τ(Q3−i)− τ(Qi))

)
.

By definition,
Π
−(Qi,Q3−i) = (R+ρQi)(1−P(Qi,Q3−i)).

∂Π−(Qi,Q3−i)

∂Qi
= ρ(1−P(Qi,Q3−i))− (R+ρQi)hizT−1P(Qi,Q3−i)

∂ 2Π−(Qi,Q3−i)

∂Q2
i

=

−ρhiT−1zP(Qi,Q3−i)−ρhiT−1zP(Qi,Q3−i)− (R+ρQi)(hiT−1z)2P(Qi,Q3−i)≤ 0.

Moreover,
∂ 2Π−(Qi,Q3−i)

∂Q2
i

< 0 if R > 0 or ρ > 0.

Lemma 1.4. Assume ρ > 0.

∂ 2Π+(Qi,Q3−i)

∂Q2
i

< 0 whenever Qi <
2

h3−iT−1z
− R

ρ
.

When Qi ≥
2

h3−iT−1z
− R

ρ
,

∂Π+(Qi,Q3−i)

∂Qi
< 0.

Assume ρ = 0 and R > 0.
∂Π+(Qi,Q3−i)

∂Qi
< 0.

Proof. Let P(Qi,Q3−i) = hi exp
(
−h3−iT−1(τ(Qi)− τ(Q3−i))

)
.

By definition,
Π

+(Qi,Q3−i) = (R+ρQi)P(Qi,Q3−i).
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I. Assume ρ > 0.

∂Π+(Qi,Q3−i)

∂Qi
= ρP(Qi,Q3−i)− (R+ρQi)h3−iT−1zP(Qi,Q3−i),

∂ 2Π+(Qi,Q3−i)

∂Q2
i

= h3−iT−1zP(Qi,Q3−i)((R+ρQi)h3−iT−1z−2ρ).

Then, obviously,
∂ 2Π+(Qi,Q3−i)

∂Q2
i

< 0 whenever Qi <
2T

h3−iz
− R

ρ
. Also,

∂ 2Π+(Qi,Q3−i)

∂Q2
i

≥ 0

whenever Qi ≥
2T

h3−iz
− R

ρ
.

∂Π+(Qi,Q3−i)

∂Qi
=−ρP(Qi,Q3−i)< 0

at Qi =
2T

h3−iz
− R

ρ
. Moreover, it is straightforward to check that

∂Π+(Qi,Q3−i)

∂Qi
is negative when

Qi is arbitrarily large. Then, necessarily,
∂Π+(Qi,Q3−i)

∂Qi
< 0 whenever Qi ≥

2T
h3−iz

− R
ρ

.

II. Assume c = 0.

∂Π+(Qi,Q3−i)

∂Qi
=−Rh3−iT−1zP(Qi,Q3−i)< 0.

Appendix B: Proof of Proposition 3

It is straightforward to check that
∂Π+(Qi,Q∗3−i)

∂Qi
< 0 and

∂Π−(Qi,Q∗3−i)

∂Q1
< 0 on R+. Hence,

by Lemma 1.1, E = {(0,0)}.

Appendix C: Proof of Proposition 4

Assume E 6= /0. With no loss of generality, let us assume Q∗1 ≥ Q∗2. Then, Π1(Q∗1,Q
∗
2) =

Π
+(Q∗1,Q

∗
2) = (R+ρQ∗1)h1 exp

(
−h2T−1(τ(Q∗1)− τ(Q∗2))

)
.

∂Π1(Q1,Q∗2)
∂Q1

= h1 exp
(
−h2T−1(τ(Q1)− τ(Q∗2))

)
(ρ − h2T−1z(R+ ρQ1)) in Q1 = Q∗1 which

has the sign of (ρ−h2T−1z(R+ρ.Q∗1)). Then, by continuity of Π
+ and Lemmas 1.1, 1.2 and

1.4, we necessarily have Q∗1 = max{0, 2T
z
− R

ρ
} or Q∗1 < Q∗2 which contradicts the assumption

that Q∗1 ≥ Q∗2.

Assume 0 >
2T
z
− R

ρ
, then Q∗1 = 0. By assumption, Q∗2 = 0. Then, Π1(Q∗1,0) = Π

+
1 (Q

∗
1,0)

and it is straightforward to check that
∂Π+(Q1,0)

∂Q1
< 0 at Q∗1. By Lemma 1.4, Q∗1 = 0 is the only

maximum of Π
+(Q1,0). Then, E = {(0,0)}.

Assume 0≤ 2T
z
− R

ρ
. Q∗1 =

2T
z
− R

ρ
. Now, it is straightforward to check that

∂Π2(Q∗1,Q2)

∂Q2
=
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∂Π−(Q2,Q∗1)
∂Q2

= 0 in Q2 = Q∗1. By Lemmas 1.1, 1.2 and 1.3, arg max
Q2∈R+

Π2(Q∗1,Q2) =
2T
z
− R

ρ

and then, E = {(2T
z
− R

ρ
,
2T
z
− R

ρ
)}.

Similarly to what has been shown above, it is straightforward to check that (
2T
z
− R

ρ
,
2T
z
−

R
ρ
) ∈ E and then E 6= /0.

Appendix D: Proof of Proposition 5

Let h1 > h2 and assume that E 6= /0.
I. Assume Q∗1 ≥ Q∗2. Then,

Π1(Q∗1,Q
∗
2) = Π

+(Q∗1,Q
∗
2) = (R+ρQ∗1)h1 exp

(
−h2T−1(τ(Q∗1)− τ(Q∗2))

)
.

∂Π1(Q1,Q∗2)
∂Q1

= h1 exp
(
−h2T−1(τ(Q1)− τ(Q∗2))

)
(ρ − h2T−1z(R+ρQ1)) which has the sign

of (ρ−h2T−1z(R+ρQ1)). Then, by Lemmas 1.1, 1.2 and 1.3, we necessarily have

Q∗1 = max{0, T
zh2
− R

ρ
} or Q∗1 < Q∗2 which contradicts the assumption that Q∗1 ≥ Q∗2.

a) Assume
T

zh2
− R

ρ
≥ 0. Let us compute

∂Π2(Q∗1,Q2)

∂Q2
in Q2 = Q∗1. After simple calculation,

it has the sign of ρ(1− h1

h2
) and then, it is, since h1 > h2, strictly negative. By Lemmas 1.1, 1.2

and 1.3, this implies that the best response of miner 2 is unique and strictly below Q∗1 if Q∗1 > 0
or equal to Q∗1 if Q1 = 0.

b) Assume
T

zh2
− R

ρ
< 0 and hence Q∗1 = 0.

∂Π2(Q∗1,Q2)

∂Q2
in Q2 = Q∗1 has the sign of

ρ−h1T−1zR.
T

zh2
− R

ρ
< 0 and h1 > h2 imply ρ−h1T−1zR < 0.Then, Q∗1 = 0 and Q∗2 = 0 is the

only Nash Equilibrium by Lemmas 1.1, 1.2 and 1.3.

II. Assume Q∗2 > Q∗1. Then,

Π2(Q∗1,Q
∗
2) = Π

+(Q∗2,Q
∗
1) = (R+ρQ∗2)h2 exp

(
−h1T−1(τ(Q∗2)− τ(Q∗1))

)
.

∂Π2(Q∗1,Q2)

∂Q2
= h2 exp

(
−h1T−1(τ(Q2)− τ(Q∗1))

)
(ρ − h1T−1z(R+ρQ2)) which has the sign

of (ρ−h1T−1z(R+ρQ∗2)). Then, by Lemmas 1.1, 1.2 and 1.3, we necessarily have

Q∗2 = max{0, T
zh1
− R

ρ
} or Q∗2 < Q∗1 which contradicts the assumption that Q∗2 > Q∗1. Assume

Q∗2 = 0, this contradicts the assumption that Q∗2 > Q∗1. Assume Q∗2 =
T

zh1
− R

ρ
> 0. Let us

compute
∂Π1(Q1,Q∗2)

∂Q1
in Q1 = Q∗2. After simple calculation, it has the sign
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of ρ(1− h2

h1
) and then is, since

h1 > h2, strictly positive. By Lemmas 1.1, 1.2 and 1.3, this contradicts the fact that Q∗2 > Q∗1.
Similarly to what has been shown above, it is straightforward to check that E 6= /0.

Appendix E: Alternative parameters’ values

Table 3 is equivalent to Table 2 but with a change of kb parameter value to 0.08 second.kB-1 as
suggested by Decker and Watenhofer.21

Table 3. kb = 0.08. A: miner’s name, B: relative computational power, C: expected reward
when ∀i ∈ N,Qi = 884×0.6kB, D: optimal number of transaction included by miner i in the
current block when ∀ j ∈ N \{i},Q j = 884×0.6kB (solution to Equation 3), E: probability to
be the first miner to find a block reaching consensus when ∀ j ∈ N \{i},Q j =×0.6kB and Qi

given in D, F: expected reward when ∀ j ∈ N \ {i},Q j = 884× 0.6kB and Qi given in D, G:
F-C difference in %. H: expected reward of miners in BTC when ∀i ∈ N,Qi = 0.

A B C D E F G H

F2Pool 18.900% 4.74171 0 19.977% 4.99419 5.325% 4.72500
AntPool 18.200% 4.56609 0 19.246% 4.81153 5.375% 4.55000
Bitfury 14.400% 3.61273 0 15.267% 3.81682 5.649% 3.60000
BTCC 13.100% 3.28658 0 13.901% 3.47534 5.743% 3.27500
KNCMiner 8.100% 2.03216 0 8.625% 2.15623 6.105% 2.02500
BW Pool 7.200% 1.80636 0 7.671% 1.91783 6.171% 1.80000
Slush 6.900% 1.73110 0 7.353% 1.83830 6.192% 1.72500
21 Inc. 3.900% 0.97845 0 4.165% 1.04117 6.411% 0.97500
Eligius 3.500% 0.87809 0 3.739% 0.93464 6.440% 0.87500
GHash.IO 1.900% 0.47668 0 2.032% 0.50793 6.556% 0.47500
Telco 214 1.600% 0.40141 0 1.711% 0.42782 6.578% 0.40000
BitMinter 0.700% 0.17562 0 0.749% 0.18729 6.644% 0.17500
Other 0.500% 0.12544 0 0.535% 0.13379 6.658% 0.12500
EclipseMC 0.400% 0.10035 0 0.428% 0.10704 6.666% 0.10000
Kano CKPool 0.300% 0.07527 0 0.321% 0.08029 6.673% 0.07500
Solo CKPool 0.200% 0.05018 0 0.214% 0.05353 6.680% 0.05000
BitClub Network 0.100% 0.02509 0 0.107% 0.02677 6.687% 0.02500
P2Pool.org 0.100% 0.02509 0 0.107% 0.02677 6.687% 0.02500
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